
Finding Missed Optimizations
through the Lens of Dead Code Elimination

Theodoros Theodoridis
theodoros.theodoridis@inf.ethz.ch

ETH Zurich
Switzerland

Manuel Rigger
manuel.rigger@inf.ethz.ch

ETH Zurich
Switzerland

Zhendong Su
zhendong.su@inf.ethz.ch

ETH Zurich
Switzerland

ABSTRACT

Compilers are foundational software development tools and in-

corporate increasingly sophisticated optimizations. Due to their

complexity, it is difficult to systematically identify opportunities

for improving them. Indeed, the automatic discovery of missed

optimizations has been an important and significant challenge. The

few existing approaches either cannot accurately pinpoint missed

optimizations or target only specific analyses. This paper tackles

this challenge by introducing a novel, effective approach that Ð in a

simple and general manner Ð automatically identifies a wide range

of missed optimizations. Our core insight is to leverage dead code

elimination (DCE) to both analyze how well compilers optimize

code and identify missed optimizations: (1) insert łoptimization

markersž in the basic blocks of a given program, (2) compute the

program’s live/dead basic blocks using the łoptimization markersž,

and (3) identify missed optimizations from how well compilers

eliminate dead blocks. We essentially exploit that, since DCE heav-

ily depends on the rest of the optimization pipeline, through the

lens of DCE, one can systematically quantify how well compilers

optimize code. We conduct an extensive analysis of GCC and LLVM

using our approach, which (1) provides quantitative and qualitative

insights regarding their optimization capabilities, and (2) uncovers

a diverse set of missed optimizations. Our results also lead to 84

bug reports for GCC and LLVM, of which 62 have already been con-

firmed or fixed, demonstrating our work’s strong practical utility.

We expect that the simplicity and generality of our approach will

make it widely applicable for understanding compiler performance

and finding missed optimizations. This work opens and initiates

this promising direction.

CCS CONCEPTS

· Software and its engineering→ Compilers.

KEYWORDS

compilers, missed optimizations, testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00
https://doi.org/10.1145/3503222.3507764

ACM Reference Format:

Theodoros Theodoridis, Manuel Rigger, and Zhendong Su. 2022. Finding

Missed Optimizations through the Lens of Dead Code Elimination. In Pro-

ceedings of the 27th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS ’22), Febru-

ary 28 ś March 4, 2022, Lausanne, Switzerland. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3503222.3507764

1 INTRODUCTION

Both industry and academia have invested decades of effort to

enhance compiler optimizations to improve the performance of

computer programs [2, 3, 10, 16]. Despite these efforts, optimiz-

ing compilers are plagued by performance bugs, also known as

missed optimization opportunities [24]. We define a missed opti-

mization opportunity loosely as a case where a compiler produces

inefficient code for a source program, for which it could be rea-

sonably expected to produce more efficient code. The reasons for

performance bugs are manifold. For example, a developer might

forget to implement certain corner cases of an analysis. As another

example, changes in one transformation, such as enabling more

aggressive loop unswitching, might not consider how a subsequent

transformation, such as value propagation, are affected [33]. In both

examples, compilers might generate suboptimal code.

Typically, performance bugs are found by users or developers of

the compiler when they observe performance bottlenecks in real-

world programs. Pinpointing such performance bugs is difficult,

time-consuming, and error-prone due to various reasons. A typical

approach would be to narrow down the location of the performance

bug by gradually reducing the program and either directly measur-

ing the execution time or using a profiler for that purpose. This

is often unreliable, because (1) measuring the execution time ac-

curately is often impossible due to noise caused by, for example,

non-determinism in process scheduling [5], (2) profilers are not

accurate at the instruction or basic block level [9], and (3) unrelated

changes in the program might have significant changes on perfor-

mance, for example, due to the linking order of object files [25].

Consequently, manually pinpointing performance bugs remains an

art that typically requires both a combination of measurements and

manual analysis of the code.

More systematic ways exist to avoid or detect performance bugs,

but they have significant limitations. Compiler developers typically

use benchmarking, to monitor the effect of compiler changes on a

selection of benchmarks [6]. However, the main use case for bench-

marking is to identify regressions and it is inapplicable to identify

existing bugs. In addition, due to the limited number of benchmarks,

performance bugs in other programs might be overlooked. In terms

of automatic testing approaches, Barany proposed comparing static

features (e.g., the number of load instructions or the number of

697

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507764
https://doi.org/10.1145/3503222.3507764

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Theodoros Theodoridis, Manuel Rigger, and Zhendong Su

register spills) of the compiled code between compilers for a given

source program to find potential missed optimizations [4]. Taneja et

al. verified and extended various analysis phases with the help of an

SMT solver to improve the performance of the compiled code [31].

While these approaches have successfully identified shortcomings

which were subsequently fixed, they only tackle certain instances

of the general missed optimizations problem (e.g., in data-flow anal-

yses, register allocation, and instruction selection); techniques that

can target a broader spectrum of a compiler’s internals are needed

to further improve the performance of compiled programs and to

prevent regressions in optimizing compilers.

This paper introduces a simple and broadly applicable concept

for automatically detecting missed optimization opportunities. Our

approach is to instrument code such that we can precisely and

deterministically probe the effects of compiler analyses and op-

timizations. Our core insight is to exploit the interplay of DCE

and all the analyses and optimizations on which it depends. For

example, a compiler might have to first inline a piece of code and

propagate constants before being able to determine that it is never

executed and can be removed. In other words, we use DCE as a

black-box oracle to check how effective a compiler is in optimizing

code and to reveal missed opportunities. More concretely, given a

program P, we insert a set of markers M into the basic blocks of

its source code. When P is compiled to machine code, a marker𝑀

only remains in the binary iff the compiler determined the block

in which it is located to be alive; a removed marker indicates that

the surrounding block is dead and DCE could successfully be ap-

plied. We denote a marker to be alive or dead depending on the

status of the surrounding block and denote a marker’s liveness as a

function𝐶𝑜𝑚𝑝 (𝑀) → {𝑑𝑒𝑎𝑑, 𝑎𝑙𝑖𝑣𝑒}. We can now apply differential

testing [23]. Given two compilers𝐶𝑜𝑚𝑝1 and𝐶𝑜𝑚𝑝2, e.g., GCC and

LLVM, we can check whether ∃𝑀 ∈ M 𝐶𝑜𝑚𝑝1 (𝑀) ≠ 𝐶𝑜𝑚𝑝2 (𝑀);

a compiler failing to eliminate a dead marker indicates a missed

optimization opportunity iff the other compiler could successfully

remove it. This technique is also applicable for a single compiler and

two optimization levels. Given a compiler with a lower optimiza-

tion level 𝐶𝑜𝑚𝑝𝐿 and a higher optimization level 𝐶𝑜𝑚𝑝𝐻 , we can

discover missed optimization opportunities by checking whether

𝐶𝑜𝑚𝑝𝐻 failed to eliminate a dead marker that𝐶𝑜𝑚𝑝𝐿 could remove,

i.e., ∃𝑀 ∈ M if 𝐶𝑜𝑚𝑝𝐿 (𝑀) → ¬𝐶𝑜𝑚𝑝𝐻 (𝑀) indicates a missed

optimization opportunity. In both cases, our technique allows us to

identify the location of the missed optimization opportunity, which

is the block of the dead marker that could not be eliminated.

DCE in combination with optimization markers satisfies two

properties that make it an appropriate oracle: (1) no compiler mod-

ifications are needed: finding the dead and alive markers is done

by inspecting the generated assembly; (2) DCE is an optimization

łsinkž: its effectiveness depends on a large part of the compiler

pipeline. There are other analyses and transformations that can be

used in such a differential testing manner. For example, one could

compare range analysis results between compilers to uncover weak-

nesses, however, this would require modifying the target compilers

to make such comparisons possible, hindering applicability and

adoption, and only a narrow part of the compiler would be tested.

Our empirical analysis demonstrates the usefulness of our ap-

proach in uncovering a wide range of missed optimization oppor-

tunities. We discovered 2,637 missed optimization opportunities

in GCC and 318 in LLVM in a corpus of 10,000 C auto-generated

files. We analyzed and reported 53 performance bugs for GCC, out

of which 43 were confirmed and 12 were fixed. For LLVM, we re-

ported 31; 19 were confirmed and 11 were fixed. We also found

44 regressions in GCC and 38 regressions LLVM; older versions

of these compilers were more successful in optimizing these cases.

To investigate the applicability of the technique to find a wide

range of performance bugs, we bisected these regressions into 23

unique commits in GCC and 21 in LLVM; in total they affect 34

and 23 unique files in the compilers’ codebases, which are related

among others to alias analysis, call graph handling, control flow

graph analysis, peephole optimizations, loop optimizations, pass

management, and value range analysis. Overall, this demonstrates

that our technique is highly effective in finding a wide range of

relevant performance bugs in state-of-the-art compilers. Our key

contributions are:

• A novel, widely-applicable, and effective black-box approach

for finding missed optimizations.

• An implementation of our approach and its evaluation via

discovering a diverse set of bugs.

• An empirical analysis on how well compilers optimize be-

tween optimization levels and in comparison with a hypo-

thetical compiler that can detect all dead code.

2 ILLUSTRATIVE EXAMPLE

Listing 1a shows an example, which we use to demonstrate how our

work enables the discovery of missed optimization opportunities.

Note that the program does not rely on any external input or state

for its computations. The test case contains two if-statements whose

conditions both evaluate to false: if (d == e) is false because the

pointers d and e contain different addresses (&a and &b[1]), if (c)

is false because it is initialized to 0 and never updated before this

check. Dead Code Elimination should remove such blocks.

Dead Code Elimination (DCE) is a compiler transformation that

removes unreachable instructions or reachable ones whose results

are unused [1]. We refer to such code fragments as łdeadž. The

successful application of DCE depends on the effectiveness of prior

compiler phases. For example, a compiler must determine that the

pointers d and e in Listing 1a do not alias to eliminate the body of

the if (d == e) statement; to eliminate the if (c) statement, the

compiler must determine that c’s value is 0. DCE can also eliminate

side-effect free computations whose results are never used, e.g., the

dead store c = 0 at the end of Listing 1a; programmers typically

do not write such code, but such patterns can emerge as a result of

other compiler transformations. One would expect that compilers

remove these dead blocks.

Surprisingly, LLVM and GCC, two state-of-the-art compilers,

fail to eliminate both checks in Listing 1a. LLVM eliminates the

second if-statement and its body, but not the first one, as shown in

Listing 1b: one indication is that the callq print instruction was

not eliminated. GCC eliminates the first if-statement and its body,

however, it generates code for the second as shown in Listing 1c; in

addition, it fails to determine that c = 0; is a dead store, instead,

it generates movl $0, c(%rip).

Existing automated approaches are inapplicable for detecting

missed optimizations such as the ones shown in Listing 1. For

698

Finding Missed Optimizations through the Lens of Dead Code Elimination ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Listing 1: Illustrative example. The original test case was

much larger and generated by Csmith [37]. The highlighted

parts are dead.

(a) Original

#include <stdio.h>

char a;

char b[2];

static int c = 0;

int main() {

char *d = &a;

char *e = &b[1];

if (d == e) {

int f = 0;

int g = 0;

for (;f < 10; f++)

g += f;

printf("%d", g);

}

if (c) {

b[0] = 1;

b[1] = 1;

}

c = 0;

return 0;

}

(b) LLVM assembly

movl $b+1, %eax

cmpq $a, %rax

jne .LBB0_2

pushq %rax

movl $.L.str ,%edi

movl $45 , %esi

xorl %eax , %eax

callq printf

addq $8, %rsp

.LBB0_2:

xorl %eax , %eax

retq

(c) GCC assembly

movl c(%rip),%eax

testl %eax , %eax

je .L2

movw $257 ,b(%rip)

.L2:

movl $0,c(%rip)

xorl %eax , %eax

ret

example, it is unclear how directly comparing the output of multiple

compilers [4] would be used, as the generated assembly does not

contain any obvious, general, and easily checkable patterns hinting

that either compiler missed eliminating the dead pieces of code.

A benchmarking-based approach would also not be useful as it

is too coarse-grained and the individual parts, such as certain if-

statements, are not explicitly targeted.

We tackle the problem of automatically discovering missed opti-

mization opportunities by using optimization markers: we instru-

ment the source code with markers that remain in the resulting

assembly iff the basic block in which the marker was placed is alive.

These markers help us identify when DCE was successfully applied,

and successful application of DCE, in turn, indicates that other

analyses and optimizations were also applied. We use function calls

as markers: we do not provide the bodies of the callees; thus, the

compilers cannot analyze them or optimize them away, and thus

they only eliminate them if the surrounding basic blocks are dead.

Listing 2a shows the instrumented version of Listing 1a; each

function prefixed by DCECheck corresponds to a marker, which was

inserted for every if-statement and for-loop body. The compilers

can only eliminate these markers if they can determine that the

Listing 2: Illustrative example, instrumented. The dead parts

are highlighted with light gray. The optimization markers

are highlighted with blue , green , and orange

(a) Instrumented

#include <stdio.h>

void DCECheck0(void);

void DCECheck1(void);

void DCECheck2(void);

char a;

char b[2];

static int c = 0;

int main() {

char *d = &a;

char *e = &b[1];

if (d == e) {

DCECheck0();

int f = 0;

int g = 0;

for (;f < 10; f++) {

DCECheck1();

g += f;

}

printf("%d", g);

}

if (c) {

DCECheck2();

b[0] = 1;

b[1] = 1;

}

c = 0;

return 0;

}

(b) LLVM assembly

movl $b+1, %eax

cmpq $a, %rax

jne .LBB0_2

pushq %rax

callq DCECheck0

callq DCECheck1

...

callq DCECheck1

movl $.L.str ,%edi

movl $45 , %esi

xorl %eax , %eax

callq printf

addq $8, %rsp

.LBB0_2:

xorl %eax , %eax

retq

(c) GCC assembly

movl c(%rip),%esi

testl %esi , %esi

jne .L8

movl $0, c(%rip)

xorl %eax , %eax

ret

.L8:

pushq %rax

callq DCECheck2

xorl %edx , %edx

xorl %eax , %eax

movw $257 ,b(%rip)

movl %edx ,c(%rip)

popq %rcx

ret

basic blocks which contain the markers are dead. If LLVM and GCC

eliminate different subsets of DCECheck markers, then there are

markers that can be feasibly eliminated by a compiler but either

LLVM or GCC is not eliminating them. In other words, at least one

of the compilers is missing an optimization opportunity.

Our approach can detect both missed opportunities in Listing 2a.

LLVM is unable to determine that d == e and generates code for

the first if-statement’s body; we can detect this by searching for a

call to DCECheck0 in the assembly code (see Listing 2b). Similarly,

GCC is unable to determine that c == 0 and generates the code for

699

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Theodoros Theodoridis, Manuel Rigger, and Zhendong Su

Listing 3: Reduced test case exposing missed optimization

opportunities in LLVM (https://bugs.llvm.org/show_bug.cgi?

id=49434).

(a) C code

char a;

char b[2];

int main() {

char *c = &a;

char *d = &b[1];

if (c == d)

DCECheck();

return 0;

}

(b) Assembly

leaq a(%rip), %rax

leaq b+1(% rip),%rcx

cmpq %rax , %rcx

jne .LBB0_2

pushq %rax

callq DCECheck

addq $8, %rsp

.LBB0_2:

xorl %eax , %eax

retq

the second if-statement’s body (see Listing 2c); the generated code

contains a call to DCECheck2 . The sets of the eliminated markers

are { DCECheck2 } for LLVM and { DCECheck0 , DCECheck1 } for

GCC. They both fail to seize optimization opportunities. Note that

LLVM’s generated code also contains DCECheck1 , but we can ig-

nore it and focus on DCECheck0 which is likely the primarymissed

opportunity (see Section 3.2): the for-loop containing DCECheck1

is nested within the if-statement body containing DCECheck0 .

The reduced and reported test cases are shown in Listing 3 and

Listing 4. Listing 3a: this test case reveals that LLVM’s EarlyC-

SEPass, a phase that is applied early in the pipeline and tries to

eliminate redundant instructions, cannot simplify &a == &b[1]

to false. Interestingly, by changing the indexing from b[1] to

b[0], EarlyCSEPass manages to simplify it and the dead block is

eliminated. Listing 4a: Removing the a = 0 assignment after the

if-statement helps the compiler recognize that a is constant and

it can constant-fold and eliminate it. This test case reveals two

issues in GCC: (a) GCC’s global variable value analysis is not flow-

sensitive [7] and cannot deduce that a does not change until the

assignment; (b) GCC fails to apply dead store elimination: storing

0 to a does not have any effect (movl $0, a(%rip)). We utilized

our optimization-marker-based technique to find and report these

bugs; the GCC developers confirmed the second one. While this

section aims to convey the intuition behind our core approach, the

subsequent section presents our technique in detail.

3 DETECTING MISSED OPTIMIZATIONS

We present a highly effective black-box approach for finding missed

optimization opportunities, i.e., cases where a compiler unexpect-

edly fails to optimize code. Our core idea is to utilize DCE, whose

effectiveness depends on other optimizations being applied, for

detecting such missed opportunities. In order to realize this idea,

we propose optimization markers: if a compiler,𝐶1, can eliminate a

marker via DCE, but another compiler,𝐶2 cannot, then this indicates

that 𝐶2 is missing an optimization opportunity. As we demonstrate

Listing 4: Reduced test cases exposing missed optimization

opportunities in GCC (https://gcc.gnu.org/bugzilla/show_bug.

cgi?id=99357).

(a) C code

static int a = 0;

int main() {

if (a) {

DCECheck();

}

a = 0;

return 0;

}

(b) Assembly

movl a(%rip), %ecx

testl %ecx , %ecx

jne .L8

movl $0, a(%rip)

xorl %eax , %eax

ret

.L8:

pushq %rax

call DCECheck

xorl %eax , %eax

movl $0, a(%rip)

popq %rdx

ret

in Section 4, such missed opportunities are caused by interactions

between DCE and a variety of other analyses and optimizations.

Figure 1 illustrates the steps of our approach. In step 1 , we

insert optimization markers to each basic block of an input test

case. Since we perform the instrumentation on a source-code level

using function calls, the approach is general and applicable to test

any compiler. In step 2 , we compile the instrumented test case with

two different compilers; the result is multiple potentially differently-

optimized versions. Instead of two different compilers, we can use

a single compiler and multiple optimization levels to identify when

higher-optimization levels fail to utilize optimization opportunities

discovered by lower-optimization levels. In step 3 , we compare

the set of remaining markers in each binary; if the sets differ, then at

least one compiler failed to eliminate a piece of code that the other

managed to. In step 4 , we eliminate the so-called non-primary

markers, which we define as markers whose elimination potentially

depends on other non-eliminated markers (see Section 3.2 for more

details). The output of our approach is a set of bug-inducing test

cases that can be further triaged and automatically reduced using

known techniques [38]. Section 3.1 details steps 1 through 3 ,

which are the core of our approach. Section 3.2 details step 4 .

3.1 Approach

Instrumentation In step 1 , we insert optimization markers

into the source code of the test case to help us detect if DCE was

successfully applied. Markers allow us to do this in a black-box

and general way without relying on or changing the internals of a

compiler. If we place a marker in the source code and it remains

in the generated assembly, then either it is in an alive part of the

program or the compiler failed to eliminate it; if it was identified as

dead, we should be unable to find it in the assembly. Optimization

markers can be implemented in many ways such as function calls,

compiler builtins, inline assembly, or writes to global variables.

700

https://bugs.llvm.org/show_bug.cgi?id=49434
https://bugs.llvm.org/show_bug.cgi?id=49434
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99357
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99357

Finding Missed Optimizations through the Lens of Dead Code Elimination ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

pushq %r12
...
call DCECheck0
...
call DCECheck1
....
call DCECheck2
...
call DCECheck3
...
call DCECheck4
...
ret

pushq %rax
...
call DCECheck0
...
call DCECheck4
...
retq

Alive Block

Dead Block

gcc -O3

clang -O3 gcc fails to eliminate

DCECheck1, DCECheck2,

and DCECheck3

DCECheck1()

DCECheck2()

DCECheck3()

Insert

optimization

markers

Compile Compare non-eliminated markers

Discard non-primary markers

Input C/C++ Test Case

CFG

Output C/C++ Test CaseInstrumented C/C++ Test

Case CFG DCECheck0()

DCECheck1()

DCECheck4()

DCECheck3()

DCECheck2()

Missed Optimizization

Opportunity for GCC

DCECheck1()

Figure 1: Overview of our approach for Missed Optimization discovery.

We implement optimization markers with function calls. We

insert calls to functions whose bodies are not provided; thus, the

compiler cannot analyze or inline them. Consequently, these mark-

ers can only be eliminated if they are dead, i.e., they can never be

executed. To check if a marker is eliminated, we can search for the

corresponding instruction, e.g., callq DCECheck01: if the corre-

sponding call instruction is not present, the marker was eliminated.

An optimization marker is only eliminated if the basic block

which contains it is dead: a compiler cannot analyze whether a

marker has any effect on the input program’s execution. Conse-

quently, we can use optimization markers to detect which basic

blocks in a program are dead.2 For example, we can check that

DCECheck2 in Listing 2b and DCECheck0 in Listing 2c were elimi-

nated because the corresponding markers are not present; thus the

if-statement bodies in Listing 2a are dead.

Missed optimization opportunity detection In step 2 , we

compile the instrumented test case with multiple compilers to gen-

erate multiple potentially differently optimized binaries. The com-

pilers can be a combination of one or more distinct compilers, e.g.,

LLVM and GCC, and multiple optimization levels. As we discuss

in Section 4, markers eliminated at lower optimization levels are

not necessarily eliminated at higher ones; thus using multiple opti-

mization levels is beneficial.

In step 3 , we detect missed optimization opportunities by com-

paring the set of alive markers using multiple compilers (i.e., us-

ing differential testing [23], which exploits N-version program-

ming [18]). If a marker 𝑀 , given a compiler 𝐶𝑜𝑚𝑝 , is present

in the generated assembly, then 𝐶𝑜𝑚𝑝 determined the marker’s

surrounding basic block to be alive, thus 𝑀 is an alive marker:

𝐶𝑜𝑚𝑝 (𝑀) = 𝑎𝑙𝑖𝑣𝑒 . If the marker is dead, 𝐶𝑜𝑚𝑝 (𝑀) = 𝑑𝑒𝑎𝑑 , the

surrounding block was eliminated via DCE. Given the set of 𝑎𝑙𝑖𝑣𝑒

and 𝑑𝑒𝑎𝑑 markers, we determine the existence of potential missed

opportunities via differential testing.

We perform differential testing for missed optimization oppor-

tunity detection in the following manner. Let M be the set of

markers of an instrumented test case, and 𝐶𝑜𝑚𝑝1 and 𝐶𝑜𝑚𝑝2 the

two compilers: if {𝑀 : 𝑀 ∈ M ∧ 𝐶𝑜𝑚𝑝1 (𝑀) ≠ 𝐶𝑜𝑚𝑝2 (𝑀)} ≠ ∅

1Depending on the backend they may also be code-generated as jump instructions.
2We note that the inserted optimization markers may impact how a compiler optimizes
the instrumented code vs. the original uninstrumented code, but this does not affect
the effectiveness of our technique.

then at least one compiler failed to eliminate one or more markers

which are actually dead. The set of missed markers for 𝐶𝑜𝑚𝑝1 is:

{𝑀 : 𝑀 ∈ M ∧𝐶𝑜𝑚𝑝1 (𝑀) = 𝑎𝑙𝑖𝑣𝑒 ∧𝐶𝑜𝑚𝑝2 (𝑀) = 𝑑𝑒𝑎𝑑}, i.e., the

markers that𝐶𝑜𝑚𝑝2 eliminates but𝐶𝑜𝑚𝑝1 does not. In principle, it

may be infeasible for a compiler to determine that a certain piece

of code is dead, however, these missed markers are eliminated by

𝐶𝑜𝑚𝑝2, thus they are feasible missed opportunities for 𝐶𝑜𝑚𝑝1.

3.2 Primary Missed Optimization Opportunities

In step 4 , we exclude discovered missed optimization opportu-

nities that are potentially caused by other missed opportunities.

Eliminating redundancy is useful both for understanding the capa-

bilities of state-of-the-art compilers, as well as for reporting cases

to compiler developers. To that end, we rely on a function’s Control

Flow Graph (CFG) to detect such secondary missed opportunities

based on whether their predecessors are also missed.

A basic block can be dead because it is dominated by other dead

blocks. We call such dead blocks secondary. For example, the nested

if-statement in Listing 5 is dead because the outer if-statement

condition (expr1) evaluates always to false; if a compiler fails to

eliminate the outer one, and as a result the inner one too, then we

want to ignore the latter and investigate why the former is missed.

In general, we want to focus on the root causes of missed dead code

elimination opportunities.

We identify secondary missed dead blocks by checking their

CFG predecessors. If a dead block is missed but one or more of

its predecessors are also dead and missed, then it is likely that the

latter is the root cause: if the compiler was able to eliminate the

predecessor(s) then it would have likely eliminated the successor.

This does not necessarily hold, but it helps focus triaging efforts on

missed opportunities which may resolve the secondary ones.

We use the term missed primary dead basic block to denote non-

eliminated dead blocks whose predecessors are either alive or de-

tected dead. More formally: let 𝐺 = (𝑉 , 𝐸) be an (inter-procedural)

control-flow graph. The predecessors of node 𝑣 are𝑝𝑟𝑒𝑑 (𝑣) : {𝑢 |𝑢 →

𝑣 ∈ 𝐸}. Each 𝑣 ∈ 𝑉 is labeled 𝑑𝑒𝑎𝑑 or 𝑙𝑖𝑣𝑒 , i.e., 𝑙 (𝑣) = 𝑑𝑒𝑎𝑑 or 𝑙𝑖𝑣𝑒 .

Thus, 𝑉 = 𝑉𝑑𝑒𝑎𝑑 ⊔𝑉𝑙𝑖𝑣𝑒 . A compiler 𝐶 may miss to detect some of

the 𝑉𝑑𝑒𝑎𝑑 nodes, but we assume it will not misidentify any of the

live nodes in 𝑉𝑙𝑖𝑣𝑒 as 𝑑𝑒𝑎𝑑 . Each 𝑣 ∈ 𝑉𝑑𝑒𝑎𝑑 is also labeled 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

or 𝑚𝑖𝑠𝑠𝑒𝑑 , i.e., 𝐶 (𝑣) = 𝑚𝑖𝑠𝑠𝑒𝑑 or 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 . For each 𝑣 such that

𝐶 (𝑣) =𝑚𝑖𝑠𝑠𝑒𝑑 , we decide whether it is primary or not.

701

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Theodoros Theodoridis, Manuel Rigger, and Zhendong Su

if(expr1)

if(expr2)

1

4

3

2

Figure 2: Control Flow Graph of Listing 5.

Definition. Missed Primary Dead Block. A node 𝑣 , with 𝐶 (𝑣) =

missed, is primary iff: ∀𝑢 ∈ 𝑝𝑟𝑒𝑑 (𝑣), 𝑙 (𝑢) = live 𝑜𝑟 𝐶 (𝑢) = detected.

For example, basic blocks 2 (B2) and 3 (B3) in Figure 2 (Listing 5)

are dead because expr1 is always false and therefore the branch in

block 1 will always jump to block 4. If a compiler does not eliminate

B2 and B3, that is, 𝐶 (2) = 𝑚𝑖𝑠𝑠𝑒𝑑 and 𝐶 (3) = 𝑚𝑖𝑠𝑠𝑒𝑑 , then we

want to focus on the root cause, i.e., why was B2 missed? If B2

was properly detected and eliminated then B3 should also have

been eliminated. B2 is a missed primary dead block because𝐶 (2) =

𝑚𝑖𝑠𝑠𝑒𝑑 , 𝑝𝑟𝑒𝑑 (2) = {1}, and 𝑙 (1) = 𝑙𝑖𝑣𝑒 . In contrast, B3 is not because

𝐶 (3) = 𝑚𝑖𝑠𝑠𝑒𝑑 , 𝑝𝑟𝑒𝑑 (3) = {2}, and 𝐶 (2) = 𝑚𝑖𝑠𝑠𝑒𝑑 . On the other

hand, if B2 was properly eliminated but B3 not, the latter would

become a primary missed block:𝐶 (3) =𝑚𝑖𝑠𝑠𝑒𝑑 , 𝑝𝑟𝑒𝑑 (3) = {2}, and

𝐶 (2) = 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 . A primary missed dead block is guaranteed to be

interesting in the sense that there are no neighboring missed dead

blocks that are causing its misidentification.

We define primary missed optimization opportunities andmarkers

as those that involve a primary missed dead block.

4 EVALUATION

We evaluate the effectiveness and practical utility of our approach.

We use two compilers in our experiments: LLVM (up to commit

3cc38703d5ab) and GCC (up to commit 92acae5047e). We first

compare LLVM’s and GCC’s DCE effectiveness against a theo-

retically ideal compiler with respect to the missed optimization

opportunities our approach uncovers (see Section 4.1). We then

demonstrate the practical utility of our approach by discovering

a variety of missed optimization opportunities in both GCC and

LLVM (see Section 4.2). We finally present and discuss some of the

reported missed opportunities (see Section 4.3).

Test programs We use a corpus of 10,000 programs generated by

Csmith [37], a random C program generator. Csmith programs are

self-contained, do not require inputs, and have large dead parts; this

makes Csmith-derived programs ideal for testing the effectiveness

of our approach. While such auto-generated programs may not

represent real-world ones, the bugs they help uncover are often

relevant to real-world programs [19, 37]. As a concrete example,

a missed optimization opportunity that we discovered with our

approach and reported (Listing 9f) had previously been reported by

developers of GCC. In addition, new programs can be generated on

Listing 5: Nested Dead Code Example

1 void foo(){

2 if (expr1){//expr1 is always false

3 //Dead Code

4 if (expr2){//expr2 can be false

5 //or true

6 //Also Dead Code

7 }

8 }

9 //...

10 }

demand, meaning that Csmith can be used as part of a continuous

effort for discovering missed opportunities and regressions.

Implementation We implemented our approach as a tool in

approximately 500 lines of C++ code using LLVM’s LibTooling for

the instrumentation, and approximately 500 lines of shell script and

Python code for the generation of test programs, differential testing,

reductions, and bisections. We instrument C and C++ source-level

structures that roughly correspond to basic blocks, e.g., if-then-

else blocks, loop bodies, switch case statements, switch default

statements, and function bodies after conditional returns.

Experimental environment Weused anAMDRyzen Threadrip-

per 3990X based system running Ubuntu 20.04 for our experiments.

Generating the test cases, instrumenting them, executing them to

derive the actual set of dead and alive blocks, and performing differ-

ential testing across all compiler configurations required around an

hour; all of these steps are very quick and can be performed in par-

allel for each test case. Reducing a discovered missed opportunity

with C-Reduce [28] typically required 4 to 8 hours; bisecting a re-

gression required a similar amount of time as it requires re-building

large parts of the compiler under test multiple times.

4.1 LLVM and GCC’s Optimization Effectiveness

We evaluate how state-of-the-art compilers would compare against

an ideal one, which eliminates all dead code. Our test cases are de-

terministic and do not require inputs; therefore, dead code observed

during one execution is dead for all executions. We determine the

dead and alive blocks of an instrumented test case by executing it:

Executed markers indicate alive blocks, while the remaining mark-

ers are dead. Thus, we can determine how well an ideal compiler

would perform with respect to DCE on the given test cases.

Dead block prevalence Out of the 3,109,167 instrumented blocks,

89.59% are dead and 10.41% are alive. The significant percentage of

dead blocks is expected, given that the programs were randomly

generated. It is also beneficial for our analysis since it allows tar-

geted testing of DCE.

Compilers eliminate the majority of dead blocks Both GCC

and LLVM at -O3 eliminate the majority of the dead markers,

94.40% and 95.69%, respectively. In particular, the percentage of

non-eliminated primary dead markers is 1.53% (42,478) for GCC

and 1.37% (38,194) for LLVM. Higher optimization levels expectedly

eliminate more dead blocks (see Table 1 and Table 2). The compilers’

702

Finding Missed Optimizations through the Lens of Dead Code Elimination ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Table 1: Higher optimization levels eliminate, as expected, a

larger percentage of dead blocks.

Optimization

Level

% dead blocks that are missed

GCC LLVM

O0 85.21% 83.82%

O1 8.18% 5.20%

Os 5.94% 4.75%

O2 5.66% 4.35%

O3 5.60% 4.31%

Listing 6: Reduced missed opportunities for both GCC and

LLVM. The dead parts are highlighted with light gray.

(a)

static int a = 0;

int main() {

if (a) DCECheck();

a = 1;

}

(b)

static int a,*b = &a;

int main() {

if (*b) DCECheck();

b = 0;

}

front ends already perform a basic form of DCE and even at -O0,

GCC eliminates 14.79% and LLVM 16.18% of the dead blocks. At

-O1 and above, both compilers eliminate more than 90% of the dead

blocks, and the differences between -O2 and -O3 are in the order

of 0.06% for GCC and 0.04% for LLVM. These differences enable

discovering a variety of missed opportunities (Section 4.2).

Examples Listing 6 shows two reduced examples with deadmark-

ers that both GCC and LLVM fail to eliminate. The case in Listing

6a is very similar to Listing 4a, with the only difference being in

the last assignment in main: a = 1 instead of a = 0; GCC fails

to eliminate both for the same reason as explained in Section 2:

its flow-insensitive global value analysis prevents it from propa-

gating the initial value of a to the if-statement check. LLVM can

eliminate the version with a = 0; however, it cannot eliminate

the marker with a = 1. This is an old regression. LLVM up to

version 3.7.1 eliminated the markers in both versions, but starting

from version 3.8, it can no longer propagate the initial value of a

to the if-statement check if it does not remain constant. Similarly,

both compilers are unable to remove the marker in the second case

shown in Listing 6b, as they cannot deduce that a remains constant

and fail to propagate its value via b to the if-statement.

4.2 Practical Utility

We evaluate the practical utility of our approach, i.e., whether it

can discover a diverse set of missed optimization opportunities in

state-of-the-art compilers, in two scenarios: (a) running both LLVM

and GCC at -O3 and checking if they eliminate a different subset of

markers, and (b) running the same compiler at -O1/-O2 versus -O3

Table 2: Higher optimization levels eliminate, as expected, a

larger percentage of primary dead blocks.

Optimization

Level

% dead blocks that are primary missed

GCC LLVM

O0 15.30% 4.75%

O1 1.76% 1.47%

Os 1.56% 1.43%

O2 1.53% 1.38%

O3 1.53% 1.37%

Listing 7: LLVM could previously eliminate dead() at both

-O2 and -O3, but after a regression the latter stopped eliminat-

ing the call. The dead parts are highlighted with light gray.

int a, b, c;

int main() {

b = 0;

while (a) while (c) if (b) dead();

return 0;

}

and checking for cases where the higher optimization level misses

opportunities that the lower one seizes. To this end, we check which

optimization markers are eliminated in the generated assembly.

Between GCC and LLVM Differential testing between GCC and

LLVM at -O3 reveals many missed opportunities for both of them.

They eliminate a different subset of markers: GCC can eliminate

3,781 that LLVM misses, but LLVM eliminates 39,723 that GCC

fails to eliminate. Out of these 396 and 4,749 are primary missed

optimization opportunities. In principle, both compilers should be

able to eliminate the missed opportunities; the fact that the other

compiler succeeds shows that it is feasible.

Note that the discovered missed opportunities are not necessarily

unique, i.e., the same root cause might be the source of multiple

missed opportunities. We deduplicate cases after reducing them

and before reporting them to compiler developers. We subsequently

investigate the diversity of the discovered missed opportunities: we

show that they relate to various compiler components.

Between optimization levels Differential testing across differ-

ent optimization levels in the same compiler reveals additional

missed opportunities. Lower optimization levels sometimes lead to

better results: GCC fails to eliminate 308 dead markers at -O3 but it

manages to eliminate them at -O1 or -O2; similarly, LLVM misses

456. Out of these, 24 and 54 are primary. Some of these missed

opportunities are regressions; for example, LLVM could previously

eliminate the call to dead in Listing 7 at -O2 and -O3, but after

a recent change of the loop unswitching implementation, LLVM

eliminates the call only at -O2.

703

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Theodoros Theodoridis, Manuel Rigger, and Zhendong Su

Table 3: The commits introducing missed DCE opportunities

affect a diverse set of LLVM components.

Component # Commits # Files

Alias Analysis 1 1

Instruction Operand Folding 2 1

Jump Threading 1 1

Loop Transformations 1 1

Pass Management 2 2

Peephole Optimizations 7 10

SSA Memory Analysis 2 1

Target Info 1 2

Value Constraint Analysis 1 1

Value Propagation 4 2

Value Tracking 1 1

Missed optimization diversity We evaluate the diversity of the

discovered missed opportunities by categorizing them based on the

compiler components they relate to. We use offending commits,

i.e., changes in a compiler that introduced these missed opportuni-

ties. We find the offending commits in the following manner: (a)

we locate a previous compiler version in which a missed call is

detected, and (b) we bisect between this version and the current

latest development version. Doing this allows us to check which of

the compilers’ file changes trigger each case and therefore which

component (e.g., alias analysis or pass management) the missed

opportunities most likely relate to. We only consider primary -O3

regressions. We categorize the files touched by each offending com-

mit into compiler component categories.

LLVM. Out of the 54 primary missed dead markers which mani-

fest at -O3 but not at -O2/-O1, 38 are regressions. Bisecting these

led to 21 different unique commits. The offending commits affect

a variety of LLVM’s components, e.g., alias analysis, value propa-

gation, peephole optimizations, loop optimizations, and the pass

manager; 11 components spread across 23 files are affected (Table 3).

GCC. Out of the 308 primary missed dead markers which mani-

fest at -O3 but not at -O2/-O1, 44 are regressions. Bisecting these

led to 23 different unique commits. These offending commits affect

a variety of GCC’s components such as control-flow and callgraph

analyses, constant propagation, inter-procedural optimizations, in-

lining, value numbering, and loop transformations: 16 components

spread across 34 files are affected (Table 4).

This demonstrates that our approach can target and uncover

missed opportunities in a variety of compiler components.

4.3 Reported Bugs

Reporting missed optimization opportunities and receiving feed-

back from the compiler developers helps us assess the utility of our

approach. We reported 53 GCC missed opportunities for GCC and

31 for LLVM. Table 5 shows the status of the reported cases. Out of

Table 4: The commits introducing missed DCE opportunities

affect a diverse set of GCC components.

Component # Commits # Files

Alias Analysis 3 1

C-family Frontend 1 4

Common Subexpression Elimination 3 2

Constant Propagation 4 2

Control Flow Graph Analysis 1 2

Copy Propagation 1 1

Inlining 3 2

Interprocedural Analyses 1 1

Interprocedural SRoA [13] 1 1

Jump Threading 1 3

Loop Transformations 3 2

Pass Management 2 2

Peephole Optimizations 1 1

Target Info 1 1

Value Numbering 3 2

Value Propagation 6 7

53 GCC reported cases, 43 were confirmed as unique and 12 fixed.

Out of 31 LLVM reported ones, 19 were confirmed and 11 fixed.

Out of the 5 bugs marked as duplicates in GCC, one was previously

reported by a different developer; this demonstrates that our ap-

proach can find relevant missed opportunities. We received very

positive feedback from the compiler developers and one replied:

łThat was a very interesting discovery! Looking for-

ward to more!ž

Test case reduction Reducing the discovered cases is helpful for

compiler developers in understanding and addressing them. We

used C-Reduce [28] for reductions; the łinterestingnessž check, i.e.,

whether a reduced candidate should be kept or discarded, is the

same as before: one compiler eliminates a dead call and another one

does not. We use compiler warnings, sanitizers [29], and whenever

possible CompCert’s C interpreter [22] to detect and reject invalid

code or code with Undefined Behavior (UB) [34, 35]; while this does

not guarantee the absence of UB, it makes manually inspecting the

reduced case easier.

Table 5: Missed Optimizations Reported, Confirmed, Marked

Duplicate, and Fixed

GCC LLVM

Reported 53 31

Confirmed 43 19

Marked Duplicate 5 0

Fixed 12 11

704

Finding Missed Optimizations through the Lens of Dead Code Elimination ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Listing 8: Example LLVM missed DCE opportunities. The

dead parts are highlighted with light gray.

(a) https://bugs.llvm.org/show_
bug.cgi?id=49773: The dead call
was eliminated at -O2 but not at
-O3. Confirmed bug.

static int a;

int **b;

int c;

int d;

int e;

int main() {

if (a) {

dead();

}

while (e) {

while (a++) {

while (c) {

*b = &d;

}

}

}

return 0;

}

(b) https://bugs.llvm.org/show_bug.cgi?
id=49731: The dead call was elimi-
nated at -O1 but not at -O3. Fixed with
611a02cce509.

static long a = 78240;

static int b, d;

static short e;

static short c(short f

,

short h)

{

return h == 0 ||

(f && h == 1)

?

0 : f % h;

}

int main() {

short g = a;

for (b=0; b<1; b++) {

e = a;

d = c((e == a)^g, a)

;

}

if (d) {

dead();

for (; a; a++);

}

return 0;

}

Examples of reported bugs To further highlight the diversity

of the uncovered missed opportunities, we discuss a small selection.

Listing 8 shows two missed opportunities in LLVM, Listing 9 shows

six missed opportunities in GCC.

• Listing 8a: A regression which involves enabling more ex-

tensive loop unswitching caused LLVM to miss eliminating

the dead call. Prior versions turned the first load of a into

0, but the new interactions between loop unswitching and

constant propagation prevent this.

• Listing 8b: LLVM could not eliminate the dead call after a re-

cent regression affecting -O3. Modulo operations on constant

ranges of the form [𝑋,𝑋 + 1) % [𝑌,𝑌 + 1) could not be sim-

plified. This was an omission as this was possible for other

operations such as and. Fixed with commit 611a02cce50.

• Listing 9a: GCC was missing the relation 𝑋 << 𝑌 ! = 0 →

𝑋 ! = 0. Fixed with 5f9ccf17de7.

• Listing 9b: GCC failed to eliminate the dead call at -O3. It

optimized main to return 0; at -O1, but a SRA copy of d

was created [13] but not eliminated (cleaned up).

• Listing 9c: GCC could not determine that d does not alias

b at -O3 and as a result the dead call was not eliminated. Inter-

estingly, this was not an issue at -O1. Fixedwith d1d01a66012.

• Listing 9d: GCC at -O3 did not properly clean up the IR

after removing the dead store to c. A leftover phi node con-

fused the value range propagation (VRP) and jump threading

passes, which thread through dead code. GCC’s older jump

threaders were not able to find any threading opportunities

and as a result the dead call was previously eliminated, i.e.,

this is a regression. Fixed with 113860301f4.

• Listing 9e: GCC failed to eliminate the call to dead at -O3,

but not at -O1. It vectorized the loop at -O3, but using un-

signed long as the internal type for the vectorized pointer

data. This prevented constant folding and eventually DCE.

Fixed with commit 7d6bb80931b.

• Listing 9f: GCC could not determine that, irrespective of

the index value, the same constant is loaded from b, which

prevents constant-folding and subsequently dead code elim-

ination. This is a duplicate of #80603 which was previously

discovered by GCC’s developers. This shows that our ap-

proach can discover łreal-worldž performance bugs.

4.4 Discussion

Capabilities and limitations Our approach can uncover many

kinds of missed optimizations as evidenced by our evaluation (e.g.,

see Table 3 and Table 4). In theory, DCE can directly capture all

missed optimizations related to data-flow analyses: any data-flow

analysis result can be converted to an if(expr) check which can

be eliminated by DCE. In practice, our approach captures many

additional transformations that interact with data-flow analyses,

e.g., peephole optimizations or loop transformations, since they

affect analysis results upon which the effectiveness of DCE depends.

On the other hand, our approach cannot detectmissed optimizations

that have no impact on DCE, such as vectorization or register

allocation. Although we target C and C++, our approach is general

and applicable to any source language and can be used to test any

static compiler, however, its applicability to dynamic compilers is

more limited since interpreters typically record whether a block is

executed; if it is not, it might not be compiled at all.

Control-flow versus data-flow based DCE Our approach is

applicable to both two types of dead code, control-flow based and

data-flow based. Our instrumentation captures control-flow based

dead code by instrumenting basic blocks (see Listing 2a). Data-

flow based dead code concerns useless definitions based on def-use

information. A useless definition fails to be eliminatedmostly due to

spurious def-use information, i.e., spurious uses residing in missed

dead blocks. Thus, our approach is general and captures both types.

DCE as an optimization oracle Our approach relies on DCE

to measure a compiler’s optimization effectiveness. A potential

concern could be that compilers only selectively apply DCE, which

would limit the applicability of our approach. While it has been

shown that transformations, such as DCE, might negatively affect

performance in special cases, such as when they affect the binary’s

layout [25, 26]), there seems to be a broad consensus that DCE is

an optimization that should be applied whenever possible, because

it has no obvious negative side-effects. This is in contrast to many

705

https://bugs.llvm.org/show_bug.cgi?id=49773
https://bugs.llvm.org/show_bug.cgi?id=49773
https://bugs.llvm.org/show_bug.cgi?id=49731
https://bugs.llvm.org/show_bug.cgi?id=49731

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Theodoros Theodoridis, Manuel Rigger, and Zhendong Su

Listing 9: Example cases uncovering a diverse array of GCCmissed DCE opportunities. In all cases GCC fails to either eliminate

the call to dead (extern void dead(void)) in general, or it is able to eliminate at -O1 but not at -O3. The dead parts are highlighted

with light gray.

(a) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
102546: GCC could not deduce that X ń Y != 0

implies X != 0. as a result the dead call was not
eliminated. Fixed with 5f9ccf17de7.

static int a;

static char b, c, d;

int main() {

int f = 0;

for (; f <= 5; f++) {

bar();

b = b && f;

d = f << f;

if (!(a >= d || f)) {

dead();

}

c = 1;

for (; c; c = 0)

;

}

}

(b) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
100034: GCC at -O3 optimized main to just return
0; however, it failed to eliminate an unused inter-
procedural SRA copy [13] of d. GCC at -O1 did not
have this issue. Confirmed bug.

static int a, b, f, g;

static int d() {

while (g) f = 0;

while (1) dead();

}

static void c() { d (); }

void e() {

while (b) {

if (!a) continue;

c();

}

}

int main() {

e();

return 0;

}

(c) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
100051: GCC failed to determine that d does not
alias b at -O3 (but it could at -O1) and as a re-
sult, the dead call was not eliminated. Fixed with
d1d01a66012.

int a, c, *f, **d = &f;

char b;

static void e() {

if ((2 ˆ b) == 0) dead();

}

int main() {

if (a) {

b = 0;

int *g = &c;

*g = 0;

f = *d;

*d = f;

e();

}

return 0;

}

(d) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
102703: GCC at -O3 did not properly clean up the IR
after removing the dead store to c which confused
the value range propagation and jump threading
passes, as a result the dead call was not eliminated.
Fixed with 113860301f4.

static int a, b;

static short c;

int main() {

for (; a; ++a) {

unsigned short d = a;

c = d >= 2 ? 0 : 2;

if (!(b | d) && d)

dead();

}

}

(e) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
99776: GCC eliminated the call at -O1; at -O3 the
loop was vectorized, however, pointer arrays are
vectorized as unsigned longs and this lead to a type
mismatch which prevented constant folding. Fixed
with 7d6bb80931b.

static int a[2];

static int b;

static int *c[2];

int main() {

for (b = 0; b < 2; b++) {

c[b] = &a[1];

}

if (!c[0]) dead();

return 0;

}

(f) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
99419: Rediscovered bug: GCC failed to determine
that no matter the index the same constant, 0, is
loaded from b, this prevented constant folding and
dead-code eliminating the call.

int a;

static int b[2] = {0,0};

int main() {

if (b[a]) {

dead();

}

return 0;

}

other compiler optimizations which may decrease the resulting

binary’s performance if applied when they should not, e.g., deciding

whether to vectorize a loop is not a simple binary decision [27].

Optimization marker alternatives Optimization markers can

also be as compiler builtins, inline assembly, or writes to global

variables. For example, a write to a global variable instead of a func-

tion call would be eligible for elimination iff it is never executed;

to determine if such a write is actually eliminated, it is necessary

to determine if the corresponding mov instruction exists in the gen-

erated assembly. We chose functions because they do not require

modifying any compiler (unlike introducing a new builtin), and

they also allow us to record their execution by linking a test case

with appropriate function implementations.

Uncovering missed optimizations in practice A potential

concern might be that developers are not interested in addressing

the missed optimizations. However, the response from the compiler

developers who confirmed and fixed our reported bugs was highly

706

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102546
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102546
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100034
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100034
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100051
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100051
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102703
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102703
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99776
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99776
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99419
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99419

Finding Missed Optimizations through the Lens of Dead Code Elimination ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

positive (see quote in Section 4.3): out of the 62 confirmed reported

bugs, 23 were fixed. We also rediscovered a missed optimization

that was previously reported by compiler developer (see Listing 9f);

this further demonstrates the practical relevance of our approach.

In this work, we used a single compiler version for LLVM and

GCC to discover missed optimization opportunities. However, dif-

ferential testing can be applied to different versions of the same

compiler. For example, the latest development branch can be con-

tinuously tested against its previous release to monitor for new

regressions. Specific commits, e.g., ones that involve significant

changes, can also be stress tested against their earlier commits.

Both are practical ways to utilize and adopt our work.

Future directions We demonstrated our approach by instru-

menting source code elements that roughly correspond to basic

blocks. Several extensions are possible that do not rely on the ex-

istence of dead blocks. For example, inserting checks of the form

if (v != C) DCECheck();, where v is a program variable and 𝐶

a constant, which can, e.g., be derived by running the program and

recording 𝑣 ’s value(s). This can facilitate testing specific analysis,

e.g., such checks can be inserted after loops to test scalar evolution.

Another possibility would be to directly generate code that contains

challenging dead code elimination opportunities instead of using

instrumented existing or auto-generated code.

Applicability of our approach While we evaluated our ap-

proach using Csmith-generated programs, missed optimizations

can be found using other programs as well. We primarily relied on

Csmith to determine how well state-of-the-art compilers compare

to a hypothetical optimal compiler; this was possible because the

generated programs are deterministic and require no inputs, and,

thus we could compute the actual set dead and alive blocks. Note

that Csmith generates sequential programs, but our approach is

general and not restricted to sequential code: if compiler A elim-

inates a piece of dead code in a parallel program and compiler B

does not, then B has missed an optimization opportunity.

5 RELATED WORK

Differential testing Themost directly relatedwork is by Barany [4]

on directly comparing elements in the generated assembly of dif-

ferent compilers,e.g.: number of memory loads and stores, register

copies, and floating-point operations. In contrast, our work relies

on dead code elimination to uncover a broader range of missed opti-

mizations (as demonstrated in Section 4.3). Barany’s work requires

crafting targeted assembly code matcher for differential testing,

whereas in our approach we do not know in advance what kind

of missed optimizations our optimization markers will uncover,

therefore the two approaches are not directly comparable.

Missed opportunities in equivalent code Hashimoto et al.

proposed randomly generating equivalent programs arithmetic

expressions for differential testing [12]; Gong et al. used source-level

loop transformations to discover missed opportunities [11]. Both of

these approaches target specific compiler components unlike our

approach which is more generic.

Data-flow analysis testing Taneja et al. proposed a white-box

approach based on SMT-solvers for exposing issues in various data-

flow analyses of LLVM such as integer ranges: the solver helps to

check if the compiler’s result are imprecise [31]. Our approach does

not directly target such analyses but instead focuses on the overall

optimization results; in addition, our approach is black-box and it

does not require any additional effort to support more compilers.

Benchmarking Benchmarking is the standard practice for detect-

ing regressions in compilers. Popular benchmark suites for C/C++

include SPEC 2017 [6] and PolyBench [17]. Benchmarking can re-

veal the existence of regressions, track improvements, and identify

performance bottlenecks on specific benchmarks with specific in-

puts. However, it is inapplicable for pinpointing the exact changes

that caused performance bugs and it cannot be used to discover

existing performance bugs; both of which our work tackles.

Uncovering performance bugs in generic software Several

approaches have been proposed for finding performance bugs

and/or regressions in user applications. Approaches include find-

ing pathological program inputs [21], synthesizing programs that

use certain functions and expose performance bottlenecks [32], or

focusing on certain kinds of targets such as database management

systems [15]. Empirical studies that explored performance bugs in

the łreal-worldž also exist [14]. To our knowledge, none of such

previous performance bug works focused specifically on compilers.

Dynamic analysis for performance bug discovery Several

dynamic approaches for exposing missed optimizations exist. Dead-

spy [8] identifies dead stores by dynamically detecting successive

writes to the same memory locations without a read between them.

Runtime value numbering [36] identifies computation redundancies

that compilers failed to eliminate. CIDetector [30] detects dead and

redundant stores as well as redundant loads. There is an overlap in

the class of missed optimizations found by our approach. However,

our approach is designed to be more general and static, and it does

not specifically target these analyses/optimizations.

Automated compiler testing Many automated approaches for

finding correctness bugs in compilers exist. Examples include among

others the development of Csmith which heavily is used for differ-

ential testing on compilers [37], and EMI is an approach that derives

programs that are equivalent given a certain input used for compiler

testing [19, 20]. Such efforts have been very successful in uncov-

ering hundreds of correctness bugs in compilers. Neither of these

approaches can be used for finding performance bugs. However, for

the realization of our approach, we relied on previously-developed

tools, such as Csmith and C-Reduce.

6 CONCLUSION

We have proposed a new approach for uncovering missed opti-

mization opportunities in compilers. We uncovered, analyzed, and

reported a diverse set of missed optimizations involving many com-

piler components: out of the 84 reported bugs, 62 were confirmed

or fixed. We performed our investigation though the lens of dead

code elimination: we were able to systematically quantify how well

compilers optimize code by instrumenting programs with optimiza-

tion markers and exploiting that DCE heavily depends on the rest

of the optimization pipeline.We expect our methodology to help

further understand the optimization capabilities of state-of-the-art

compilers and to aid the discovery of missed optimizations and re-

gressions. This work is the first step towards a promising direction

for future work.

707

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Theodoros Theodoridis, Manuel Rigger, and Zhendong Su

A ARTIFACT APPENDIX

A.1 Abstract

The artifact contains the code and dataset we used for our exper-

iments, as well as scripts to generate the numbers and tables of

our evaluation. Specifically, it includes (a) the corpus of randomly

generated programs that we used in Section 4’s evaluation; (b)

scripts for generating a new corpus and validating the existing

one; (c) our LLVM-based optimization marker instrumenter; (d)

scripts for generating the missed optimization statistics presented

in Section 4; (e) the full list of submitted bug reports with links to

the respective compiler bug trackers; (f) end-to-end examples that

led to bug reports. Everything is packaged and pre-built as a docker

image. A standard X86 Linux machine running docker is necessary

to evaluate this artifact.

A.2 Artifact Checklist (Meta-information)
• Data set: Autogenerated (Csmith) C programs

• Run-time environment: Linux

• Hardware: X86

• Output: Statistics on missed optimizations for GCC and LLVM

• How much disk space required (approximately)?: 15G

• How much time is needed to prepare workflow (approxi-

mately)?: A fewminutes to download and import the docker image.

• How much time is needed to complete experiments (approx-

imately)?: A few minutes to validate the existing results, or up

multiple hours to generate new results.

• Publicly available?: Yes

• Code licenses: MIT

• Archived (DOI): 10.5281/zenodo.5870184

A.3 Description

A.3.1 How to Access. The artifact can be downloaded from https:

//zenodo.org/record/5870184.

A.3.2 Hardware Dependencies. A standard X86 computer.

A.3.3 Software Dependencies. Docker.

A.4 Installation

tar xf ASPLOS22-DCE-Artifact.tar.gz

cat dce-artifact-image.tar | docker import - dce_artifact

A.5 Experiment Workflow

(1) Generate random C programs with Csmith.

(2) Instrument them with optimization markers.

(3) Generate the ground truth, i.e., which markers are actually

dead and which alive; generate for each compiler and op-

timization level the set of eliminated and non-eliminated

markers.

(4) Compare the results to identify missed dead markers.

A.6 Evaluation and Expected Results

The existing corpus can be used to regenerate the results of Section 4.

We provide scripts to perform all the steps in Section A.5 and

generate the Tables and numbers in Section 4 (the instructions are

in README.md).

REFERENCES
[1] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, principles,

techniques. Addison wesley 7, 8 (1986), 9.
[2] Amir H Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina

Silvano. 2018. A survey on compiler autotuning using machine learning. ACM
Computing Surveys (CSUR) 51, 5 (2018), 1ś42. https://doi.org/10.1145/3197978

[3] David F Bacon, Susan L Graham, and Oliver J Sharp. 1994. Compiler transforma-
tions for high-performance computing. ACM Computing Surveys (CSUR) 26, 4
(1994), 345ś420. https://doi.org/10.1145/197405.197406

[4] Gergö Barany. 2018. Finding Missed Compiler Optimizations by Differential Test-
ing. In Proceedings of the 27th International Conference on Compiler Construction
(Vienna, Austria) (CC 2018). Association for Computing Machinery, New York,
NY, USA, 82ś92. https://doi.org/10.1145/3178372.3179521

[5] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and
Laurence Tratt. 2017. Virtual machine warmup blows hot and cold. Proceedings
of the ACM on Programming Languages 1, OOPSLA (2017), 1ś27. https://doi.org/
10.1145/3133876

[6] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC CPU2017:
Next-generation compute benchmark. In Companion of the 2018 ACM/SPEC Inter-
national Conference on Performance Engineering. 41ś42. https://doi.org/10.1145/
3185768.3185771

[7] David Callahan. 1988. The program summary graph and flow-sensitive inter-
procedual data flow analysis. In Proceedings of the ACM SIGPLAN 1988 con-
ference on Programming Language design and Implementation. 47ś56. https:
//doi.org/10.1145/53990.53995

[8] Milind Chabbi and John Mellor-Crummey. 2012. Deadspy: a tool to pinpoint
program inefficiencies. In Proceedings of the Tenth International Symposium on
Code Generation and Optimization. 124ś134. https://doi.org/10.1145/2259016.
2259033

[9] Dehao Chen, Neil Vachharajani, Robert Hundt, Shih-wei Liao, Vinodha Ra-
masamy, Paul Yuan, Wenguang Chen, and Weimin Zheng. 2010. Taming hard-
ware event samples for FDO compilation. In Proceedings of the 8th annual
IEEE/ACM international symposium on Code generation and optimization. 42ś
52. https://doi.org/10.1145/1772954.1772963

[10] Armando Fox, Michael Hsiao, James Reed, and Brent Whitlock. [n.d.]. A Survey
of General and Architecture-Specific Compiler Optimization Techniques.

[11] Zhangxiaowen Gong, Zhi Chen, Justin Szaday, David Wong, Zehra Sura, Nef-
tali Watkinson, Saeed Maleki, David Padua, Alexander Veidenbaum, Alexandru
Nicolau, et al. 2018. An empirical study of the effect of source-level loop transfor-
mations on compiler stability. Proceedings of the ACM on Programming Languages
2, OOPSLA (2018), 1ś29. https://doi.org/10.1145/3276496

[12] Atsushi Hashimoto and Nagisa Ishiura. 2016. Detecting arithmetic optimization
opportunities for C compilers by randomly generated equivalent programs. IPSJ
Transactions on System LSI Design Methodology 9 (2016), 21ś29. https://doi.org/
10.2197/ipsjtsldm.9.21

[13] Martin Jambor. 2010. The new intraprocedural Scalar Replacement of Aggregates.
In GCC Developers’ Summit. 47.

[14] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012. Un-
derstanding and Detecting Real-World Performance Bugs. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (Beijing, China) (PLDI ’12). Association for Computing Machinery, New
York, NY, USA, 77ś88. https://doi.org/10.1145/2254064.2254075

[15] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang. 2019.
APOLLO: Automatic detection and diagnosis of performance regressions in
database systems. Proceedings of the VLDB Endowment 13, 1 (2019), 57ś70.
https://doi.org/10.14778/3357377.3357382

[16] Sesha Kalyur and GS Nagaraja. 2016. A survey of modeling techniques used
in compiler design and implementation. In 2016 International Conference on
Computation System and Information Technology for Sustainable Solutions (CSITSS).
IEEE, 355ś358. https://doi.org/10.1109/CSITSS.2016.7779385

[17] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. 2018. Polybench: The first
benchmark for polystores. In Technology Conference on Performance Evaluation
and Benchmarking. Springer, 24ś41. https://doi.org/10.1007/978-3-030-11404-6_3

[18] J. C. Knight and N. G. Leveson. 1986. An Experimental Evaluation of the Assump-
tion of Independence in Multiversion Programming. IEEE Trans. Softw. Eng. 12, 1
(jan 1986), 96ś109. https://doi.org/10.1109/TSE.1986.6312924

[19] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via Equiv-
alence modulo Inputs. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Edinburgh, United Kingdom)
(PLDI ’14). Association for Computing Machinery, New York, NY, USA, 216ś226.
https://doi.org/10.1145/2594291.2594334

[20] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Compiler Bugs via
Guided Stochastic ProgramMutation. In Proceedings of the 2015 ACM SIGPLAN In-
ternational Conference on Object-Oriented Programming, Systems, Languages, and
Applications (Pittsburgh, PA, USA) (OOPSLA 2015). Association for ComputingMa-
chinery, New York, NY, USA, 386ś399. https://doi.org/10.1145/2814270.2814319

[21] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz:
Automatically Generating Pathological Inputs. In Proceedings of the 27th ACM

708

https://zenodo.org/record/5870184
https://zenodo.org/record/5870184
https://doi.org/10.1145/3197978
https://doi.org/10.1145/197405.197406
https://doi.org/10.1145/3178372.3179521
https://doi.org/10.1145/3133876
https://doi.org/10.1145/3133876
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/53990.53995
https://doi.org/10.1145/53990.53995
https://doi.org/10.1145/2259016.2259033
https://doi.org/10.1145/2259016.2259033
https://doi.org/10.1145/1772954.1772963
https://doi.org/10.1145/3276496
https://doi.org/10.2197/ipsjtsldm.9.21
https://doi.org/10.2197/ipsjtsldm.9.21
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.14778/3357377.3357382
https://doi.org/10.1109/CSITSS.2016.7779385
https://doi.org/10.1007/978-3-030-11404-6_3
https://doi.org/10.1109/TSE.1986.6312924
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2814270.2814319

Finding Missed Optimizations through the Lens of Dead Code Elimination ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam,
Netherlands) (ISSTA 2018). Association for Computing Machinery, New York, NY,
USA, 254ś265. https://doi.org/10.1145/3213846.3213874

[22] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister,
and Christian Ferdinand. 2016. CompCert-a formally verified optimizing compiler.
In ERTS 2016: Embedded Real Time Software and Systems, 8th European Congress.

[23] William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100ś107.

[24] Tipp Moseley, Dirk Grunwald, and Ramesh Peri. 2009. OptiScope: performance
accountability for optimizing compilers. In 2009 International Symposium on Code
Generation andOptimization. IEEE, 254ś264. https://doi.org/10.1109/CGO.2009.26

[25] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. 2009.
Producing Wrong Data without Doing Anything Obviously Wrong!. In Pro-
ceedings of the 14th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Washington, DC, USA) (ASPLOS
XIV). Association for Computing Machinery, New York, NY, USA, 265ś276.
https://doi.org/10.1145/1508244.1508275

[26] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. Bolt:
a practical binary optimizer for data centers and beyond. In 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). IEEE, 2ś14.
https://doi.org/10.1109/CGO.2019.8661201

[27] Vasileios Porpodas and Timothy M Jones. 2015. Throttling automatic vectoriza-
tion: When less is more. In 2015 International Conference on Parallel Architecture
and Compilation (PACT). IEEE, 432ś444. https://doi.org/10.1109/PACT.2015.32

[28] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case reduction for C compiler bugs. In Proceedings of the 33rd
ACM SIGPLAN conference on Programming Language Design and Implementation.
335ś346. https://doi.org/10.1145/2254064.2254104

[29] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. Addresssanitizer: A fast address sanity checker. In 2012 USENIX
Annual Technical Conference (ATC 12). 309ś318.

[30] Jialiang Tan, Shuyin Jiao, Milind Chabbi, and Xu Liu. 2020. What every scientific
programmer should know about compiler optimizations?. In Proceedings of the
34th ACM International Conference on Supercomputing. 1ś12. https://doi.org/10.

1145/3392717.3392754
[31] Jubi Taneja, Zhengyang Liu, and John Regehr. 2020. Testing Static Analyses

for Precision and Soundness. In Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization (San Diego, CA, USA) (CGO
2020). Association for Computing Machinery, New York, NY, USA, 81ś93. https:
//doi.org/10.1145/3368826.3377927

[32] Luca Della Toffola, Michael Pradel, and Thomas R. Gross. 2018. Synthesizing
Programs That Expose Performance Bottlenecks. In Proceedings of the 2018 In-
ternational Symposium on Code Generation and Optimization (Vienna, Austria)
(CGO 2018). Association for Computing Machinery, New York, NY, USA, 314ś326.
https://doi.org/10.1145/3168830

[33] Sid-Ahmed-Ali Touati and Denis Barthou. 2006. On the decidability of phase
ordering problem in optimizing compilation. In Proceedings of the 3rd conference
on Computing frontiers. 147ś156. https://doi.org/10.1145/1128022.1128042

[34] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zeldovich, and
M Frans Kaashoek. 2012. Undefined behavior: what happened to my code?. In
Proceedings of the Asia-Pacific Workshop on Systems. 1ś7. https://doi.org/10.1145/
2349896.2349905

[35] Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, and Armando Solar-Lezama.
2013. Towards optimization-safe systems: Analyzing the impact of undefined
behavior. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. 260ś275. https://doi.org/10.1145/2517349.2522728

[36] Shasha Wen, Xu Liu, and Milind Chabbi. 2015. Runtime value numbering: A
profiling technique to pinpoint redundant computations. In 2015 International
Conference on Parallel Architecture and Compilation (PACT). IEEE, 254ś265. https:
//doi.org/10.1109/PACT.2015.29

[37] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and un-
derstanding bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation. 283ś294. https:
//doi.org/10.1145/2254064.2254075

[38] Andreas Zeller. 2002. Isolating cause-effect chains from computer programs.
ACM SIGSOFT Software Engineering Notes 27, 6 (2002), 1ś10. https://doi.org/10.
1145/587051.587053

709

https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1109/CGO.2009.26
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1109/CGO.2019.8661201
https://doi.org/10.1109/PACT.2015.32
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/3392717.3392754
https://doi.org/10.1145/3392717.3392754
https://doi.org/10.1145/3368826.3377927
https://doi.org/10.1145/3368826.3377927
https://doi.org/10.1145/3168830
https://doi.org/10.1145/1128022.1128042
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1145/2517349.2522728
https://doi.org/10.1109/PACT.2015.29
https://doi.org/10.1109/PACT.2015.29
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1145/587051.587053
https://doi.org/10.1145/587051.587053

	Abstract
	1 Introduction
	2 Illustrative Example
	3 Detecting Missed Optimizations
	3.1 Approach
	3.2 Primary Missed Optimization Opportunities

	4 Evaluation
	4.1 LLVM and GCC's Optimization Effectiveness
	4.2 Practical Utility
	4.3 Reported Bugs
	4.4 Discussion

	5 Related Work
	6 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Checklist (Meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results

	References

