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ABSTRACT

Inlining is a core transformation in optimizing compilers. It replaces

a function call (call site) with the body of the called function (callee).

It helps reduce function call overhead and binary size, and more im-

portantly, enables other optimizations. The problem of inlining has

been extensively studied, but it is far from being solved; predicting

which inlining decisions are beneficial is nontrivial due to inter-

actions with the rest of the compiler pipeline. Previous work has

mainly focused on designing heuristics for better inlining decisions

and has not investigated optimal inlining, i.e., exhaustively finding

the optimal inlining decisions. Optimal inlining is necessary for

identifying and exploiting missed opportunities and evaluating the

state of the art. This paper fills this gap through an extensive em-

pirical analysis of optimal inlining using the SPEC2017 benchmark

suite. Our novel formulation drastically reduces the inlining search

space size (from 2349 down to 225) and allows us to exhaustively

evaluate all inlining choices on 1,135 SPEC2017 files. We show a

significant gap between the state-of-the-art strategy in LLVM and

optimal inlining when optimizing for binary size, an important,

deterministic metric independent of workload (in contrast to per-

formance, another important metric). Inspired by our analysis, we

introduce a simple, effective autotuning strategy for inlining that

outperforms the state of the art by 7% on average (and up to 28%)

on SPEC2017, 15% on the source code of LLVM itself, and 10% on

the source code of SQLite. This work highlights the importance

of exploring optimal inlining by providing new, actionable insight

and an effective autotuning strategy that is of practical utility.
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1 INTRODUCTION

Function inlining (aka inlining expansion) is one of the fundamental

compiler transformations. Not only does it eliminate function call

overhead and potentially shrinks binary size, but it also expands the

scope of intra-procedural analyses and optimizations. All of these

are enabled by replacing function calls with the callees’ bodies. The

resulting optimization scope expansion makes inlining a critical

transformation. Figure 1 illustrates the importance of inlining.
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Figure 1: This figure shows that inlining is a critical compiler

optimization. It depicts size improvement due to inlining for

the SPEC2017 benchmark suite (not including the Fortran-

only benchmarks) for LLVM’s -Os optimization level; in the

best case, enabling inlining results in up to 3× size improve-

ment. For example, for the benchmark łleelaž, the resulting

binary size with inlining enabled is 30% of that with inlining

disabled when compiling at LLVM’s -Os.

Making good inlining decisions is difficult; good choices depend

not only on other inlining choices, but also on the rest of the op-

timization pipeline. For example, inlining may enable dead code

elimination or lead to code size bloat. An inlining heuristic must

balance enabling further compiler optimizations and size increase.

The general inlining problem is as hard as the NP-complete

knapsack problem [22]. Thus, many inlining heuristics have been

proposed [7, 20, 23, 24, 28]; they consider various program fea-

tures, e.g., the number of instructions, the call-site context, or an

estimation of the compile-time impact. Profiling information in a

JIT-compiled environment or through Profile Guided Optimizations

(PGO) can also drive inlining heuristics [4, 21]. For example, very

cold functions (i.e., functions that are unlikely executed) are not

inlined when optimizing for performance. One proposed method

for sidestepping the difficulty of predicting the cascading effects of

inlining are trials [11]: the compiler tentatively inlines a function to

evaluate its effectiveness and backtracks whenever it makes sense.

Despite the abundant work on inlining, there has been no sys-

tematic study to investigate optimal inlining (i.e., finding the best

inlining choices) and evaluate the state of the art against it; only

empirical analyses of inlining strategies exist [2, 3, 10, 12, 16, 25].

Insights into optimal inlining not only help understand how well
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the state of the art performs, but also help develop more effective

inlining strategies. Thus, the key objective of this work is to conduct

the first systematic, extensive empirical analysis of optimal inlining.

As the first piece of foundational empirical work on understand-

ing optimal inlining, we focus on binary size, which is a determinis-

tic metric that does not depend on workload selection, while perfor-

mance does. We believe that it is critical to first establish complete

and principled foundations for reasoning about inlining choices

before extending toward the practically more complex target of run-

time optimization. In addition, optimizing for size is important in

situations such as web applications [13], as well as modern mobile

apps whose code size can reach over 100MB: łReduced applica-

tion size is critical not only for the end-user experience but also

for vendor’s download size limitations. Moreover, download size

restrictions may impact revenues for critical businesses.ž[6].

One challenge for studying optimal inlining at a realistic scale is

the sheer size of the potential inlining choicesÐthe straightforward

search space includes 2𝑛 inlining alternatives, where𝑛 is the number

of inlinable1 call sites in a program. To tackle this challenge, we

propose a novel, alternative search space formulation that takes

advantage of a call graph’s connectivity and leads to significantly

fewer evaluations of inlining configurations when searching for the

optimal. Indeed, for our study of optimal inlining on the SPEC2017

benchmark suite, our formulation reduces the search space from

2349 to 225, which allows us to compute and analyze optimal inlining

on 1,135 SPEC2017 C/C++ source files.

To evaluate how well the state-of-the-art inlining strategies per-

form, we use our inlining search space formulation to find the

optimal configurations w.r.t. binary size on these 1,135 SPEC2017

files. We compare the state-of-the-art inlining strategy in LLVM2

with optimal inlining. Our results show a clear gap, thus suggesting

opportunities for designing better inlining strategies (Section 4).

We examine and characterize the optimal inlining configurations,

and observe a prevalent local independence property among con-

nected call edges in call graphs for the SPEC2017 files. This insight

motivates us to introduce a new, simple autotuning strategy for in-

lining that exploits this property. Results show that our autotuning

strategy outperforms LLVM by 7% on average across all SPEC2017,

up to 4× on individual files, and up to 28% on individual bench-

marks (Section 5.2.2). We also apply our autotuning on LLVM’s own

codebase and SQLite; we obtain a 15% improvement over LLVM on

the former and 10% on the latter (Section 5.2.3), highlighting the

practical utility of our autotuner for rapidly reducing the program

size of relevant applications, e.g., by utilizing łcompilation farmsž.3

This paper initiates the study of optimal inlining and highlights

its importance; it makes the following contributions:

• A novel formulation of the inlining search space that leads to or-

ders of magnitude reduction compared to the naïve exponential

space, making it feasible to empirically study optimal inlining

at a realistic scale (Section 3);

1Not all functions can be inlined, e.g., an inliner may be unable to handle recursive
functions, or a callee that is defined in a different translation unit.
2Using the optimization level ł-Osž, which is designed for size optimization.
3Distributed compilation services, e.g., Google Goma (https://chromium.googlesource.
com/infra/goma/server/) and the GCC Compile Farm (https://gcc.gnu.org/wiki/
CompileFarm).

• The first extensive systematic study of optimal inlining on the

SPEC2017 benchmark suite by comparing the inlining heuris-

tics of a state-of-the-art optimizing compiler (LLVM) against

optimal inlining for program size (Section 4); and

• A simple, effective inlining autotuning strategy that exploits

insights from the optimal inlining study which, when evaluated

for program size, leads to significant improvement over the

state of the art on SPEC2017, SQLite, and the codebase of LLVM

itself with an overall ~6,000,000 LoC (Section 5).

The rest of the paper is organized as follows. We first present

necessary background (Section 2) and introduce our formulation of

the inlining search space (Section 3). We then present our analysis

of optimal inlining on SPEC2017 (Section 4) for program size. Next,

we introduce our autotuning strategy (Section 5.1) and demonstrate

its effectiveness on SPEC2017, SQLite, and LLVM (Section 5.2). We

then discuss the impact of our work (Section 6). Finally, we discuss

related work (Section 7) and conclude (Section 8).

2 BACKGROUND

This section gives the needed background on function inlining

(also known as inlining expansion). We define several relevant

terminologies and provide examples for illustration.

Inlining is the process of replacing a function call with the callee’s

body. Consider the code fragment in Listing 1 and the correspond-

ing generated assembly fragments for foo in Listing 2 and Listing 3:

inlining bar (not shown in the assembly listings) extends the anal-

ysis scope of the compiler; it can determine that (bar(i) == i)

is always satisfied in the first loop iteration, therefore the gener-

ated code just checks if the input argument n is positive. The non

inlined version (Listing 3) includes all the original loop logic since

the compiler cannot determine that it is unnecessary.

int bar(int a) {

return a + a;

}

int foo(int n) {

for (int i = 0; i < n; ++i)

{

if (bar(i) == i)

return 0;

}

return 1;

}

Listing 1: Source Code

foo:

xorl %eax , %eax

testl %edi , %edi

setle %al

retq

Listing 2: foo inlined

foo:

pushq %rbp

pushq %r14

pushq %rbx

movl $1 , %r14d

testl %edi , %edi

jle .LBB1_5

movl %edi , %ebp

xorl %ebx , %ebx

.LBB1_3:

movl %ebx , %edi

callq bar

cmpl %eax , %ebx

je .LBB1_4

addl $1 , %ebx

cmpl %ebx , %ebp

jne .LBB1_3

jmp .LBB1_5

.LBB1_4:

xorl %r14d , %r14d

.LBB1_5:

movl %r14d , %eax

popq %rbx

popq %r14

popq %rbp

retq

Listing 3: foo not inlined
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Figure 2: Inlining example: (a) initial call graph, the A →

B (blue edge) is an inlining candidate; (b) the call was not

inlined, illustrated by the dashed edge; (c) the call was inlined,

A and B were merged, and an additional edge corresponding

to the (B, C) call was inserted; B is not removed since it has

one additional caller, i.e., D.

Inlining works on those functions that can be inlined, i.e., the

inlinable functions. Not all functions are inlinable because, for ex-

ample, an inliner might not be able to handle recursive functions,

or the callee’s body might be unavailable.

Inlining operates on call graphs. A program’s call graph consists

of functions (the nodes) and function calls (the edges). An inlining

heuristic decides for each inlining candidate, i.e., function call, if it

should be inlined. We represent these two choices on a call graph

with the following transformations:

• Inlining an edge (call): The two adjacent nodes (functions) are

łmergedž. If the callee is invoked in additional call sites, it is

cloned before merging to preserve it for these call sites.

• Not-Inlining an edge (call): The edge is marked as łno-inlinež.

Note that the corresponding call still exists in the program, but

is no longer considered for inlining.

We refer to the former as inlining a candidate and the latter as

not-inlining a candidate. For example, the A→ B call in Figure 2(a)

is an inlining candidate. If it is not-inlined as shown in Figure 2(b),

the corresponding edge is simply perserved (marked by the dashed

edge). Otherwise, if it is inlined as shown in Figure 2(c), the two

nodes are merged; the edge AB → C corresponds to the original

B → C call. Note that a clone of B is merged to A since there is

another caller, D.

We define an inlining configuration as the assignment of labels {in-

line, no-inline} to all inlining candidates. The inlining configuration

of the call graph in Figure 2(a) would be {(A → B) : inline, (B →

C) : no-inline, (D→ B) : no-inline}.

Inlining may introduce multiple copies of the same call. In the

inlining graph of Figure 2(c), edges B→ C and AB→ C correspond

to the same (original) call. Depending on the inlining strategy and

the inliner’s capabilities, these edges may be treated independently,

i.e., one may be inlined and the other not, or they may be coupled. In

this work, we assume the latter, but supporting the former requires

a straightforward extension.

3 FORMULATE THE INLINING SEARCH SPACE

This section presents our novel formulation of the inlining search

space. We first discuss the straightforward exponential search space

(Section 3.1) to illustrate the challenges andmotivate our recursively

partitioned search space (Section 3.2).
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Figure 3: Naïve Inlining Search Space Size for SPEC2017: The

only benchmarks which can be fully exhaustively explored

within a reasonable time budget are lbm and mfc (and cam4

without its Fortran parts).

3.1 Naïve Exponential Search Space

We define the inlining search space of a call graph as all of its

possible inlining configurations. Given a call graph 𝐺 with |𝐸𝐺 |

edges, 2 |𝐸𝐺 | configurations exist. All of them must be evaluated

to find the optimal, i.e., the configuration resulting in the smallest

binary size or runtime. For example, the call graph in Figure 2(a)

has three edges and |{inline, no-inline}|3 = 8 different inlining con-

figurations. In general, given a call graph𝐺 , the size of the inlining

search space, that is, the number of different inlining configurations,

is 2 |𝐸𝐺 | , where 𝐸𝐺 denotes the set of 𝐺 ’s edges.

One might hope to find optimal inlining configurations via ex-

haustive search, however, the inlining search space size of real-

world programs is generally too large. For example, the SPEC2017

gcc benchmark has 211,213 different configurations spread across

387 files (Figure 3). The only benchmarks amenable to feasible

exhaustive exploration are lbm and mfc.

This search space formulation can, however, be extremely pes-

simistic. For example, the call graph in Figure 4 has 3 edges, and

therefore the search space size is 23 = 8. However, there are two

independent components in the call graph: {F, G, K} and {H, L}; an

inlining decision in the former does not affect the latter (and vice

versa), therefore each component can be independently explored.

Thus, the search space size is actually 22 + 21 = 6. By considering

the connected components, cc, of a call graph G, the search space

size becomes
∑
𝑐∈𝑐𝑐 2

|𝐸𝑐 | . Depending on source code organization,

a translation unit may or may not contain a partitioned callgraph.

F

G

H

L

K

Component Inlining Configurations

F→ G G→ K H→ L

no-inline no-inline no-inline

no-inline inline inline

inline no-inline

inline inline

Figure 4: Example of call graph with multiple components.
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3.2 Recursively Partitioned Search Space

Partitioning a call graph’s inlining search space is not limited to its

connected components. Two observations enable this:

(1) Connected components are independent w.r.t. inlining.

(2) Not inlining a bridge4 is identical to deleting it w.r.t. inlining:

additional independent components are created.

The second observation holds for the following reason. Each inlined

call can potentially extend the scope of compiler transformations.

Inlining multiple adjacent calls increases the optimization scope

even further, which leads to the need for exhaustive search. How-

ever, the optimization scope is not expanded across non-inlined

calls. Inlining a callgraph bridge, 𝐵, that connects two callgraph

components, 𝐶1 and 𝐶2, is the only way to combine their optimiza-

tion scopes. Thus, 𝐶1 and 𝐶2 are independent w.r.t. inlining if 𝐵 is

not inlined, and they can be independently searched.

Partitioning a callgraph across bridges leads to a potentially

smaller search space. Given a callgraph 𝐺 with 𝑁 edges, and a

bridge 𝐵 connecting components 𝐶1 and 𝐶2 with respectively 𝑁1

and 𝑁2 (𝑁1 + 𝑁2 = 𝑁 − 1) edges: (1) the naive search space size is

2𝑁 ; (2) the partitioned one is (2𝑁1 + 2𝑁2 + 1) + (2𝑁−1). The first

parenthesized term corresponds to the search space size of the

two components if 𝐵 is not inlined (+1 for evaluating the combined

result), and 2𝑁−1 corresponds to the search space size if 𝐵 is inlined.

The example in Figure 5a demonstrates how partitioning across

callgraph bridges can reduce the search space size: K→ L is a bridge

between {F, G, K} and {L, H, I}; if it is not inlined, the remaining

decisions do not have any łinter-componentž effects, e.g., inlining

G → K does not affect the transformations applied on {L, H, I} in

Figure 5b. The inlining search space of the Figure 5a call graph can

be partitioned based on this observation:

• If K → L is not inlined (Figure 5b), the two resulting compo-

nents can be independently explored. Each of them has 2 edges,

thus 2 ∗ 22 = 8 inlining configurations must be evaluated. This

results in two partial inlining configurations: {(F → G) ⇒

choice0, (G → K) ⇒ choice1} and {(L → H) ⇒ choice2, (H →

I) ⇒ choice3}. To combine these into a complete inlining con-

figuration (which includes K→ L⇒ no inline) one additional

program size evaluation (compilation) is necessary.

• If K → L is inlined (Figure 5c), the resulting call graph has 4

edges, therefore its search space size is 24 = 16.

• The combined size is (22 + 22 + 1) + 24 = 25, which is smaller

than 25 = 32 under the naïve formulation.

This partitioning scheme can be applied recursively to explore

all inlining configurations. New bridges are created as the callgraph

is dynamically updated by removing non-inlined edges or merging

nodes across inlined ones. These newly-formed bridges are used to

further reduce the search space size. We use the name independent

inlining components for the components that are formed by ignor-

ing no-inline edges. We call the resulting search space recursively

partitioned search space.

One way to visualize the search space of this approach is the

inlining tree. The first layers of the Figure 5 example’s inlining tree

are shown in Figure 6. Each tree node contains the set of (potentially

4A bridge is an edge of a graph whose deletion increases the graph’s number of
connected components.

F G

I L

K

H

(a) original

F G

I LH

K

(b) K→ L not inlined

F G

I

KL

H

(c) K→ L inlined

Figure 5: The inlining search space in Figure 5a can be par-

tioned on edge K→ L. The reduced space size is 24+22+22+1 =

25, while the naïve non-partitioned one is 25 = 32.

F, G, K, L, H, I

F, G, KL, H, I

F, G, KL, HF, G, KL, HI L, HF, G L, HI

L, H, I

F, GK 

F, G, K 

Figure 6: Inlining tree for the call graph of Figure 5. Each

subtree corresponds to one inlining decision. Sibling sub-

trees assign different inlining labels to the same edge. The

rectangular node contains the two independent components

which were formed by not inlining the (K→ L) call. Both of

them can be explored independently.

merged via inlining) call graph nodes. The root of Figure 6 includes

all nodes of Figure 5a. Each edge of the tree assigns a label, either

inline or no-inline, to a call graph edge. The edges attached to the

root of Figure 6 assign labels to K→ L. The left subtree corresponds

to Figure 5c, where nodes K and L are merged. The right subtree

corresponds to Figure 5b and the two independent components

are shown in the rectangular node. Each path from the root to

a leaf corresponds to an inlining configuration. Paths that cross

rectangular nodes are missing labels for edges in other independent

components; they are partial inlining configurations. Three kinds

of tree nodes exist:

• InliningTreeLeafs (not shown in Figure 6): correspond to

inlining configurations.

• InliningTreeBinaryNodes (elliptical nodes in Figure 6) con-

tain an independent inlining component; the edges connecting

it with its children assign opposite labels to the same edge.

• InliningTreeComponentsNodes (rectangular nodes in Figure 6)

contain multiple InliningTreeBinaryNodes; one for each in-

dependent inlining component.

An inlining tree can be used to exhaustively search for the opti-

mal inlining configuration in the recursively partitioned space. The

search space size is the number of InliningTreeLeafs plus the

number of InliningTreeComponentsNodes in the tree: each leaf

corresponds to a (partial) inlining configuration that must be eval-

uated, and each set of independent inlining components requires

an extra evaluation to combine the best child configurations.
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Algorithm 1: Evaluate an inlining tree

1 Function EvaluateInliningTree(InliningTreeNode):
2 switch Kind(InliningTreeNode) do
3 case InliningTreeLeaf do
4 return (InliningTreeNode.InliningDecisions,

CompileAndMeasureSize(

InliningTreeNode.InliningDecisions));

5 case InliningTreeBinaryNode do
6 InliningDecisions1, Size1←

EvaluateInliningTree(InliningTreeNode.Left);

7 InliningDecisions2, Size2←

EvaluateInliningTree(InliningTreeNode.Right);

8 if Size1 ≤ Size2 then
9 return (InliningDecisions1, Size1);

10 else
11 return (InliningDecisions2, Size2);

12 case InliningTreeComponentsNode do
13 ChildrenDecisions← [ ];

14 for ChildNode ∈ InliningTreeNode do
15 ChildDecisions, _←

EvaluateInliningTree(ChildNode);

16 ChildrenDecisions.Append(ChildDecisions);

17 return (ChildrenDecisions,
CompileAndMeasureSize(ChildrenDecisions))

The optimal inlining configuration is found by recursively prop-

agating the best configurations from the leaves up to the root (Algo-

rithm 1). All leaves are evaluated by compiling the target program

with the corresponding inlining configurations and measuring the

resulting binary sizes. InliningTreeBinaryNodes select the best

configuration from their children. InliningTreeComponentsNodes

combine the configurations of their children (by simply appending

them since they are independent), and the new inlining configura-

tion is evaluated and propagated. In the end, one configuration, the

optimal, will reach the root. This evaluation scheme is embarrass-

ingly parallel and most evaluations can be executed concurrently

in different cores/machines.

An inlining tree is constructed from a call graph by recursively

assigning inlining labels to the graph’s edges (Algorithm 2). An

InliningTreeBinaryNode is used for single independent inlining

components. At each such node a partition edgemust be selected and

two subtrees are attached to the node: one with the edge inlined

and one with it not inlined. If multiple independent inlining

components exist, an InliningTreeComponentsNode is used; the

tree construction proceeds in each of the node’s children. If there are

no unlabeled edges, an InliningTreeLeaf is attached. Recursive

calls are treated in the same way as regular calls. It is the inliner’s

responsibility to correctly inline them (e.g., to a certain depth).

The partition edge selection is important as inlining trees are not

unique. For example, if the edges (F→ G), (G→ K), . . . , are selected

sequentially in Figure 5a, no InliningTreeComponentsNode will

be introduced, and there will not be any search space size reduction.

It is important to prioritize bridges such that many independent

components arise. In our implementation we use the following

heuristic (SelectPartitionEdge in Algorithm 2):

• If the call graph contains bridges, then the bridge adjacent to the

least eccentric vertex (among the vertices adjacent to bridges) is

Algorithm 2: Build an inlining tree from a call graph

1 Function BuildInliningTree(CG):
2 if CG.NumberEdges( ) == 0 then
3 return InliningTreeLeaf(CG);

4 if NumberConnectedComponents(CG) > 1 then
5 return BuildInliningTreeFromComponents(CG);

6 PEdge← SelectPartitionEdge(CG);

7 NotInlinedSubTree← BuildInliningTree(RemoveEdge(CG,PEdge));

8 InlinedSubTree← BuildInliningTree(InlineEdge(CG,PEdge));

9 return InliningTreeBinaryNode(NotInlinedSubTree, InlinedSubTree);

10 Function BuildInliningTreeFromComponents(CG):
11 Components← [ ];

12 for CC ∈ ConnectedComponents(CG) do
13 Components.Append(BuildInliningTree(CC));

14 return InliningTreeComponentsNode(Components);

15 Function SelectPartitionEdge(CG):
16 if NumberBridges(CG) > 0 then
17 return EdgeAdjacentToLeastEccentricNode(Bridges(CG));

18 else
19 U← NodeWithHighestOutDegree(CG);

20 V← SuccessorWithLeastInDegree(CG,U);

21 return (U,V) ;

selected, i.e., the vertex with the least maximum distance from

any other vertex. This prioritizes central bridges.

• Otherwise, among the edges adjacent to the node with the

highest out-degree, the one adjacent to the node with the least

in-degree is chosen. This heuristic tries to balance two met-

rics: (1) the reduction of high out degrees since they can block

partitioning, and (2) creating as many bridges as possible by

removing edges adjacent to low in-degree nodes.

Using a heuristic for edge-selection does not affect the optimality of

the tree’s evaluation. However, it does affect the number of different

configurations that will be explored, i.e., a bad selection heuristic

can lead to exploring all 2𝑛 configurations, while a good one may

lead to potentially orders of magnitude fewer.

The presence of recursive functions can result in an infinitely

large search space. We can bound the number of possible config-

urations by setting a limit to recursive inlining. Without loss of

generality, we inline recursive functions at most once.

4 ANALYZE OPTIMAL INLINING ON SPEC2017

This section presents our investigation into optimal inlining on the

SPEC2017 benchmark suite. Exhaustive search for optimal inlin-

ing is necessary for evaluating state-of-the-art inlining heuristics

and identifying missed inlining opportunities. The search space

reduction of our recursively partitioned search space makes such

empirical studies feasible on realistic benchmarks whose callgraph

maximum degrees are reasonably small. We demonstrate this by

evaluating a subset of the SPEC2017 benchmarks. Out of the 3,258

files, 746 are trivialw.r.t. inliningÐthey require no inlining decisions.

We focus on the remaining 2,512 files5.

5We perform our analysis on individual source files and not at the whole program
level due to the compilation model that C and C++ compilers use: calls across source
files are resolved at link time and cannot be inlined.
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Table 1: Search space size reduction on a subset of SPEC2017

(1,186 call graphs with recursive space size up to 220). The

total reduction is approximately 2349 → 225.2. The recursively

partitioned space enables exploring larger call graphs and it

significantly reduces the cost of exploring smaller ones.

Search Space
Per file size percentiles (log 2)

Geometric Mean

Median 75th 95th Max

naïve 8 18 38 349 7.57

recursive 6.2 10.9 17.4 19.9 5.42

600 700 800 900 1,000 1,100
0%

100%

200%

Relative Size Increase over Optimal

LLVM finds 526 optimal
configurations (clipped)

Size incr. >=5% (n=190)
Size incr. >=10% (n=97)
Median size incr. of
nonoptimal: 2.37%

Figure 7: LLVM’s inlining heuristic versus optimal for

SPEC2017 call graphs with recursive search space size up

to 218. LLVM’s finds the optimal configurations for 526 but it

fails in 609 cases. The maximum size increase is 281%.

4.1 Search Space Reduction

We first demonstrate the search space reduction magnitude. We

select all SPEC2017 files whose recursively partitioned search space

sizes are up to 220 (1,186 files), and we compare them with the naïve

space sizes (Table 1). The reduction ranges from a few percent

to several orders of magnitude. The largest one is 2349 → 210.

The total search space reduction is approximately 2349 → 225 (or

2243 → 225 if we exclude the largest call graph). Our recursive

space formulation enables:

• Exhaustively exploring larger call graphs, even ones with an

extreme number of naïve inlining configurations.

• Exhaustively exploring significantly fewer inlining configura-

tions in smaller call graphs.

4.2 Roofline Analysis vs. LLVM

We want to understand the gap between the state-of-the-art and

the optimal in the context of function inlining for binary size. The

optimal inlining configuration yields the optimal binary size, how-

ever, multiple inlining configurations that achieve optimality may

exist; any of them is is sufficient for our purpose.

Using our reduced search space we evaluate the inlining heuristic

of a modern optimizing compiler, LLVM, against the optimal. We

exhaustively evaluate all SPEC2017 inlining trees with search space

size up to 218 (𝑛 = 1, 135) 6 and compare the resulting .text section

size with LLVM’s7 output (Figure 7). In 46% of the cases, LLVM’s

6It required a few hours on a 64-core AMD Ryzen Threadripper 3990X based system.
7Version 11.0.0 with -fexperimental-new-pass-manager and -Os. The former in-
structs LLVM to use its new pass manager. The latter is łlike -O2 with extra optimiza-
tions to reduce code size.ž

Table 2: Optimal and LLVM common inlining choices.

Optimal Inlining no inline no inline inline inline

LLVM no inline inline no inline inline

4,057 3,556 537 6,855

(a) blender:object_ops.c (LLVM: 102% size of optimal)

(b) cactuBSSN:CactusSync.c (LLVM: 169% size of optimal)

Figure 8: (a) Optimal, (b) LLVM: The dashed calls are not in-

lined, the solid ones are inlined. LLVM is sometimes inlining

too aggressively leading to significant size increase.

inlining heuristic can find the optimal; however, it fails to do so

in the rest: the median size overhead in the non-optimal cases is

2.37%, 16% of the cases have an overhead of at least 5%, 8.5% have

an overhead of at least 10%, and the maximum is 281%. LLVM’s

inlining heuristic performs very well in the majority of the cases,

but there is still room for improvement.

Our dataset contains 15,005 inlining decisions. LLVM agrees

with optimal inlining in 72.7% of them (Table 2). In 23.7%, LLVM’s

heuristic was too aggressive and inlined too many calls. On the

other hand, it was too conservative in 3.6% of them. In total, 7,613

(50.7%) of the calls were not inlined and 7,392 (49.3%) inlined in

the optimal configurations; LLVM did not inline 4,594 (30.6%) and

inlined 10,411 (69.4%) calls. LLVM is too eager to inline calls, this

can also be seen in a few sample call graphs (Figure 8) where this

eagerness results in a significant size increase.

We also examine the length of the optimal inlined call chains;

an inlined call chain is a call graph path whose edges have been

inlined. The most prevalent call chain length is 1 (Figure 9); there

are very few long inlined call chains. This implies that good inlining

choices for binary size can be largely taken by only considering

a local scope. We use this insight to design a simple but effective

autotuning strategy for inlining.

982



Understanding and Exploiting Optimal Function Inlining ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

1 2 3 4 5 6
Number of edges in optimally inlined call-chains

0

5,000 4,861

960 526 136 23 7

7,379

1,459
419 105 32 13

Optimal
LLVM

Figure 9: In most cases the length of inlined call chains is

small. Longer optimally inlined call chains are much rarer.

5 LOCAL INLINING AUTOTUNER FOR SIZE

As we argue in Section 3.2, no inline’d edges partition the search

space. This enables independent search in the resulting independent

inlining components. We derive the following insights from our

optimal inlining study (Section 4):

• A large percentage of edges is not inlined (Table 2).

• Shorter inlined call chains are more prevalent (Figure 9).

There are two special cases of the above insights.

(1) Optimal configurations without any inline’d edges.

(2) Optimal configurations with inlined chains of up to length 1.

While these two special cases are too strict to represent general call

graphs, they are easy to test and serve as a basis for our autotuner.

Starting from a clean slate, i.e., an inlining configuration that assigns

no inline to all edges, both of these cases can be checked in the

following manner: each edge is toggled between no inline and

inline and both resulting program sizes are measured; the best one

is kept. All edges can be examined independently and in parallel.

In both cases the result would be the optimal configuration:

(1) There is no edge whose inlining would result in a smaller size,

therefore the above procedure would confirm this.

(2) Since all optimally inlined call chains contain only one edge,

they are either in different call graph connected components,

or no inline’d edges connect them. Thus they can all be checked

independently and the above procedure will find them. If this

was not the case, e.g., if inlining an edge, A, was an optimal

choice only if another edge, B, was also inlined, then A and B

would be adjacent, and there would be at least one optimally

inlined call chain of length 2.

Algorithm 3:Autotune for Size (starting from a clean slate)

1 Function AutotuneForSize(CG):
2 InliningDecisions← [ ];

3 FinalInliningDecisions← [ ];

4 for Edge ∈ CG do

InliningDecisions.Append(MakeNoInlineDecision(Edge)) ;

5 SizeNoInline← CompileAndMeasureSize(InliningDecisions);

6 for i← 1 to Length(InliningDecisions) do
7 InliningDecisions.At(i).Inline = True;

8 SizeInline← CompileAndMeasureSize(InliningDecisions);

9 if SizeNoInline < SizeInline then
10 InliningDecisions.At(i).Inline = False;

11 else
12 InliningDecisions.At(i).Inline = True;

13 FinalInliningDecisions.Append(InliningDecisions.At(i));

14 InliningDecisions.At(i).Inline = False ; // Reset decision for

next iteration

15 return FinalInliningDecisions

5.1 The Autotuner

We take advantage of the above insights to design a simple, embar-

rassingly parallel, and effective inlining autotuner (Algorithm 3).

Starting from a clean slate (all edges no inline’d) and given a call

graph, GC: for each edge E ∈ CG, we inline it and measure the re-

sulting program size, if it is better than the clean slate, we keep

it. All edges are checked (in parallel) against the same clean slate.

The number of necessary compilations (to measure the .text section

sizes) is 𝑛 + 2, where 𝑛 is the number of edges of the input call

graph. The additional 2 compilations are necessary for evaluating

the initial clean slate and for the final combined result.

We come up with two variations for our autotuner:

(1) Instead of starting with a clean slate, we use the LLVM in-

lining heuristic’s choices. In this mode the autotuner is fine

tuning LLVM’s inlining configuration.

(2) The autotuner is run for multiple rounds, each of them starts

with the output inlining configuration of the previous one.

Each successive round fine-tunes the results, essentially ex-

tending the inlining scope. The goal is to cope with more

complex configurations (e.g., inlining longer call chains or

siblings). The number of rounds can either be pre-selected

or the autotuner runs until a fix-point is reached. The num-

ber of compilations is 𝑅(𝑁 + 2), where 𝑁 is the number of

inlininable calls and 𝑅 the number of rounds.

5.2 Evaluation

We evaluate our proposed inlining autotuner for program size (Sec-

tion 5) on the SPEC2017 benchmark suite; we compare against

LLVM’s inlining decisions and the optimal configurations when-

ever they are available (Section 5.2.1 and Section 5.2.2). We also

present a case study on real-world systems software: LLVM’s and

SQLite’s source code (Section 5.2.3). The research questions (RQ’s)

that we aim to answer are:

• RQ1: How effective is local autotuning versus LLVM’s inlining

strategy on SPEC2017? (Section 5.2.1)

• RQ2: How effective is round-based autotuning? (Section 5.2.2)

• RQ3: Can local autotuning be effectively applied to real-world

software? (Section 5.2.3)

Summary Results: Our autotuner can reduce the size of 14 out of

the 20 SPEC2017 benchmarks by up to 27.6%; the 5 regressions can

be eliminated by initializing the tuning session with LLVM’s own

inlining decisions. The total reduction across all SPEC2017 files in

the latter case is 4.86%; by combining the results of clean slate and

LLVM-initialized autotuning the total reduction drops to 6.05%. We

can find 921 (81%) optimal inlining configurations out of the 1,135

exhaustively analyzed files (LLVM finds only 526). Four rounds of

tuning can further reduce sizes of individual benchmarks by up

to an additional 10% and the total size is reduced by 7.05%. Also,

our autotuner can reduce the size of LLVM by up to 15.21% and of

SQLite by up to 10.25%.

We run all benchmarks on a AMD Ryzen Threadripper 3990X

based system running Ubuntu 18.04. We based our work on LLVM

version 11.0.08: the only modifications are on InliningAdvisor9.

8Including up to commit bcedc4fa0a606b4c4384c0892c7d4da8010a676a.
9Which is LLVM’s API for interchanging inlining heuristics.
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Figure 10: Autotuning (clean slate) versus LLVM -Os on

SPEC2017. Out of the 20 benchmarks: 14 shrink in size, 1

remains unchanged, and 5 inflate. The median relative size

is 97.95%. The largest benchmark size reduction is 27.6% (mfc).

(a) LLVM (b) Autotuner

Figure 11: Autotuned versus LLVM’s inlining configurations

for parest:dof_objects.c (an additional connected compo-

nent of the call graph where both systems agree is omitted).

The dashed calls are not inlined, the solid ones are inlined.

The autotuned version’s size is 218% of the LLVM one.

We used the -fexperimental-new-pass-manager (it enables the

new pass manager) and -Os flags. The latter is łlike -O2 with ex-

tra optimizations to reduce code size.ž O2 is a łmoderate level of

optimization which enables most optimizations.ž 10

5.2.1 RQ1: How effective is local autotuning? We first evaluate a

single autotuning session starting with a clean slate (Figure 10).

Out of the 2,509 files in the SPEC2017 suite, our autotuner manages

to shrink 1,306 in size, 427 remain unchanged, and 776 grow in size.

The relative size of the most shrunk file is 26%, and the most inflated

is 218%. The inflated files amount to a 1.39% size increase compared

to the total. Out of the 20 benchmarks, 14 shrink in size with mfc

having the largest improvement: 27.6%. One benchmark’s size re-

mains unchanged, and 5 inflate; these regressions can be trivially

fixed by falling back to LLVM for the inflated files. The duration

of the autotuning session is 4.4 hours; a bit more than 2 hours is

spent on a single file: 502.gcc/insn-attrtab.c which includes

16,178 calls. All subsequent autotuning sessions (and rounds) on

SPEC2017 have almost identical runtimes.

The autotuner finds better inlining configurations for around

half the files, where LLVM’s heuristic is too aggressive for binary

size. In 417 others both the autotuner and LLVM find the same

configurations. However, the local pair-wise scope is not enough

10List and descriptions of command line flags: https://clang.llvm.org/docs/
CommandGuide/clang.html
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Figure 12: LLVM-initialized autotuning versus LLVM -Os on

SPEC2017. Out of the 20 benchmarks: 19 shrink in size, 1

remains unchanged. The median relative size is 97.6%. The

largest benchmark size reduction is 21% (mfc).

Table 3: Benchmarks faring worse with LLVM-initialization.

Benchmark
Autotuned relative size vs LLVM -Os

Clean slate LLVM-initialized

imagick 92.1% 96.3%

mfc 72.4% 79%

nab 97.1% 98.8%

nambd 93.9% 95.2%

perlbench 98.9% 99.6%

x264 92.3% 94.1%

xz 97.8% 97.9%

whenever more than one call site must be considered at the same

time. For example, LLVM inlines all calls in Figure 11, but the auto-

tuner does not: inlining the individual gray/dashed edges results

in size increase, however, inlining all of them triggers the callee’s

Dead Code Elimination (this also eliminates its own inlined callee).

Expanding the autotuner to handle these cases would be straight-

forward: for each callee with internal linkage and many callers, an

additional configuration with all of them inlined must be checked.

We repeat the same experiment initializedwith LLVM’s decisions

(Figure 12); we test if these configurations are a better starting point

than the clean slate. Almost all of the size regressions are eliminated:

only 3.8% of the files grow in size, and they only amount to a 0.17%

size increase compared to the total. The total size reduction also

improved: 97.16% → 95.14%. This confirms that our autotuning

strategy can also be used to improve LLVM’s inlining decisions.

Interestingly, even though this approach is overally better than

using a clean slate, some benchmarks end up worse (Table 3). In

many call graphs the autotuner is getting stuck in łlocal minimaž,

e.g., in Figure 13 the clean slate result inlines only two edges, but

LLVM inlines all but one; the autotuner must łoutlinež almost of

all of them, but it is unable to do that by examining them one-by-

one. On the other hand, the autotuner can improve upon LLVM in

Figure 14, this a similar case to Figure 11: local inlining starting from

a clean slate cannot discover dead code elimination opportunities.
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(a) Clean slate (rel. to LLVM size: 49%)

(b) LLVM-initialized (rel. to LLVM size: 96%)

Figure 13: imagick:decorate.c: example call graph which

fares better with clean slate autotuning.

(a) Clean slate (rel. to LLVM size: 152%)

(b) LLVM-initialized (rel. to LLVM size: 78%)

Figure 14: leela:FullBoard.cpp: example call graph which

fares better with LLVM-initialized autotuning.

Different call graphs benefit from different starting points. We

can combine them by selecting the best result per call graph (Fig-

ure 15): the total reduction further improves (97.16% , 95.14%) →

93.95%, the median per benchmark (97.95% , 97.6%) → 96.4%, as

well as all the other metrics.

To put the effectiveness of our autotuner in perspective, we

compare it against the optimal inlining configurations (Figure 16):

our autotuner finds the optimal inlining configurations in 81% of

the cases, whereas LLVM only does so in 46%.
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Figure 15: Autotuning clean slate and LLVM-initialization

combined versus LLVM -Os on SPEC2017. The median rela-

tive size is 96.4%.
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Figure 16: Optimality of local autotuning for inlining (best

of clean slate and LLVM-initialized) on a subset of SPEC2017.

Autotuning finds 81% of the optimal inlining configurations.

5.2.2 RQ2: How effective is round-based autotuning? Certain in-

lining decisions make sense only in the presence of others (e.g.,

Figure 11, Figure 14); we test if these can be discovered sequentially

across different rounds. Each autotuning round is initialized with

the resulting inlining configuration of the previous one:

(1) Initial state := clean slate or LLVM’s inlining decisions.

(2) Repeat 𝑛 times:

(a) Autotune on top of the current initial state.

(b) Update the initial state with the previous step’s results.

We choose 𝑛 = 4 as there was little gain past 4 rounds in most of our

experiments. Additional rounds are clearly beneficial (Figure 17);

most benchmarks improve with additional rounds, e.g., mfc 82%→

72%, leela 88.8% → 84.5%, and parest 81.8% → 77.2% (LLVM-

init). Multiple rounds are necessary to discover non-local inlining

configurations, i.e., those that cannot be discovered by analyzing

individual call edges within one round.

An inlining configuration across rounds example is shown in

Table 4: each round performs very few changes but the size decrease

is significant: 100%→ 71.6%→ 41.2%→ 41.4%→ 35.8%. Despite

the small size increase in round 3 (41.2%→ 41.4%), the autotuner

was able to reduce the size in the subsequent round by an additional

5%. This demonstrates our hypothesis that multiple rounds are an

effective way of extending the autotuner’s scope. Although rarely

observed in our results, this example shows that successive rounds

do not always improve the results from a previous round. One

solution is to select the best configuration from all the rounds.
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Figure 17: Round-based autotuning versus LLVM -Os on

SPEC2017. Most benchmarks benefit from additional rounds.

The largest improvement is: 79%→ 72% (mfc) and 112.4%→

93.4%. (mfc), for LLVM-initialized and clean slate, respectively.

Table 4: 523.xalancbmk/XalanBitmap.cpp inlining changes

across rounds of LLVM-initialized autotuning.

LLVM Round 1 Round 2 Round 3 Round 4

# inlined 114 109 112 107 109

# non inlined 35 40 37 42 40

Rel. Size 100% 71.6% 41.2% 41.4% 35.8%

Combining the 4 clean slate and 4 LLVM-initialized rounds re-

sults in an even better improvement (Figure 18): the median bench-

mark relative size compared to LLVM -Os is 95.65% and the per

file total is 92.95%, resulting in a 7.05% improvement. Tuning for

size impacts performance (Figure 19). We benchmarked the SPEC-

speed2017 subset of SPEC2017 (excluding benchmarks with Fortran

code as we do not tune them) and observed a 2% median and 3.6%

average overhead. Interestingly, performance improved in the case

of mfc, which also benefited the most from size tuning.

5.2.3 RQ3: Local autotuning applied to real-world software. We

also evaluate the inlining autotuner on complex system software:

LLVM’s and SQLite’s source code.

LLVM Case Study. We use the source files of LLVM’s main library

components (llvm-project/llvm/lib). The corresponding call

graphs are much larger compared to SPEC2017: the median number

of inlinable calls per file is 1,004 (vs 41 for SPEC2017), the maximum

is 55,156 (vs 18,250), and the total number is 3,641,338 (vs 457,655).

We started the autotuning session with LLVM’s inlining con-

figurations and ran three rounds. The total size reduction of the

combined 3-round results is 15.21%; more than twice as good as the

best total size reduction for SPEC2017, one reason might be that the
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Figure 18: Round-Based autotuning clean slate (4 rounds)

and LLVM-initialization (4 rounds) combined versus LLVM

-Os on SPEC2017. Per benchmark relative size median: 95.65%.

Per file relative size total: 92.95%.
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Figure 19: Performance overhead on the (non-Fortran) SPEC-

speed2017 subset: tuning inlining decisions for size (clean

and LLVM-initialized combined, 4 rounds each) results in a

3.6% (geometric) mean and 2% median overhead.

larger and more complex LLVM-derived call graphs have more ben-

eficial inlining opportunities. At the same time, LLVM’s complexity

results in longer autotuning times: a single round takes 44-53 hours,

certain files take more than 4 hours to autotune due to the large

number of calls (e.g., 55,156). Nonetheless, this demonstrates that

our approach is effective even on complex systems software.

SQLite Case Study. We use the SQLite Amalgamation11 for our

evaluation: a single combined C file containing all the source code of

the core SQLite library. It contains 18,125 inlinable calls.We evaluate

two scenarios: (a) building an X86 library, (b) building a WASM

library via Emscripten [27]); in both we run two 4-round autotuning

sessions, one clean-slate initialized and one LLVM initialized. Each

round lasted approximately 90 minutes.

• X86: The autotuned version relative sizes compared to LLVM

-Os are 89.7% for clean-slate and 91.6% for LLVM-initialized. The

clean-slate results are likely better because LLVM’s aggressive

inlining heuristic is a bad starting point when considering size.

• WASM: The autotuned versions relative to the baseline emcc12

-Os which has inlining disabled by default are 1.26% and 0.96%

smaller. Inlining as currently implemented on LLVM seems to

be marginally beneficial for WASM targets; using LLVM’s own

inlining heuristic result to a 18.3% size increase over no inlining,

and 19.6% over the tuned version.

11https://sqlite.org/amalgamation.html
12We used version 2.0.26 but replaced LLVM with our patched one.
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We observe a substantial size reduction on X86 builds of SQLite,

łThe Most Widely Deployed and Used Database Engine, with likely

over one trillion SQLite databases in use.ž13. As evidenced by its own

developers’ investigations14, the footprint of SQLite is an important

optimization target.

6 DISCUSSION

A foundation for future research on inlining: In-depth empir-

ical understanding of optimal inlining via exhaustive evaluation

is an important, practical means to guide the development of fast,

effective compiler heuristics similar to how others are derived. For

example, many peephole optimizations are discovered by expen-

sive superoptimization and then incorporated into compilers [19].

Inlining autotuning can not only complement this goal, but also

be used for widely deployed software, e.g., extensively tuning an

important application or library (such as Chrome or SQLite) before

its deployment to a large number of users/devices.

Exhaustive search for performance: Although providing the

conceptual framework, our model cannot be directly used to search

for optimal inlining configurations for performance. An important,

general challenge is that optimality can depend on program inputs,

and thus workload selection is critical. Moreover, second-order

effects such as I-cache pollution can also result in implicit interac-

tions between functions at the hardware level whenever they are

executed. A possible solution is to avoid partitioning a call graph

across edges that connect functions interacting in this way. It is

generally infeasible to detect such interactions, but it may be pos-

sible to approximate and model them. For example, profiling can

highlight frequent calls that should be marked as łnever partitionž.

Studying the impact of such effects and the need to model them, as

well as how to balance between performance and code size, is an

interesting research direction.

Learning inlining heuristics: Our work provides the founda-

tion for generating large amounts of data via scalable exhaus-

tive search to enable developing effective ML models for inlin-

ing. Prior work has considered learning a heuristic for program

size [5, 9, 17, 18, 26]; the training data was generated by various

exploration methods. However, none considered (or had access to)

the optimal decisions. Good training data is necessary and critical

to enable such research.

Autotuning scalability: Although the evaluation of our proof-of-

concept autotuner demonstrates its usefulness, scalability was not

our primary goal. A practical implementation can take advantage of

multiple properties to reduce the number of necessary evaluations,

and as a result the tuning time; e.g. only re-tuning parts of call

graphs that change between rounds, or by taking advantage of

the independence properties described in section Section 3.2 to

combine multiple rounds into one.

13https://www.sqlite.org/mostdeployed.html
14https://sqlite.org/footprint.html

7 RELATED WORK

This section surveys related work, which we categorize into several

threads: (1) empirical studies on inlining, (2) mitigating the complex-

ity of inlining, (3) inlining heuristics, (4) search space exploration,

(5) machine learning heuristics, and (6) outlining.

Empirical studies on inlining: Several efforts exist that aim to

empirically investigate different aspects of inlining, including com-

parisons of static and profile-based heuristics [3, 16, 25], studying a

particular inliner and its effects on programs [10, 12], and evaluat-

ing inliners under specific contexts, such as ARM-based embedded

systems [2]. These studies focus on comparing existing inlining

heuristics. In contrast, we aim to study optimal inlining by under-

standing the inlining search space and deriving a roofline analysis.

Mitigating the complexity of inlining: One of the difficulties

with making good inlining choices is predicting the cascading ef-

fects of the additionally enabled transformations. Even the order at

which call sites are considered for inlining can have a significant

impact on the resulting code [7]. Inlining trials [11] attempts to

sidestep this issue by tentatively inlining functions to estimatee

the impact of subsequent optimizations more easily. An alternative

approach for VM-based languages is to propagate arguments and

their types across function calls [24]; the aim is to reduce the com-

plexity of predicting which choices lead to further optimizations.

At a high level, our (round-based) autotuner operates under a simi-

lar principle of łtrialsž. However, it is not meant to run as part of

a regular compilation, thus, it is not constrained by a strict time

budget and it can explore a much larger number of candidates.

Inlining heuristics: Finding effective heuristics for inlining has

been the subject of research for decades. Static heuristics use source-

code-derived information [15, 28]. Various profile-guided/JIT-based

heuristics that take advantage of runtime information exist [8].

Partial inlining of a method’s hot path simplifies the complexity

of inlining [1]. Using additional context information, such that a

certain virtual call is mostly made with one or two concrete types,

can facilitate better inlining choices [14]. Profile information can

be used to better estimate the trade-offs between performance

and increased program size [28] or increased compilation time [4].

Combinations of profiling information, clustered inlining, and trials

have also been proposed [21]. Unlike these, our work focuses on

deriving an inlining autotuner that evaluates 100-1,000s of different

inlining choices, instead of one or several candidates.

Inlining search space exploration: Previous attempts at search

space exploration focus on different aspects of inlining. One ap-

proach is to tune a heuristic’s parameters (e.g., the inlined callee’s

number of statements threshold) via genetic algorithms [5]. This

expands (or focuses) the space of potential inlining configurations

selected by the heuristic. Adaptive inlining explores the space of

potential heuristics [9]: the space is defined by a set of programmet-

rics (e.g., statement count and constant parameter count) and rules

on them (e.g., calls in loops whose callees have fewer than 𝑥 state-

ments should be inlined); the rules are tuned via hill-climbing. Both

approaches focus on performance and do not aim to be exhaustive.

Our work targets optimal inlining and focuses on a different kind

of exploration: the space of all potential inlining configurations and

their impact on program size.
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Machine learning for inlining:Machine learning has been sug-

gested as an alternative to łhand-craftedž inlining heuristics. Tech-

niques such as random forests [18] and NeuroEvolution of Aug-

menting Topologies (NEAT) [17] have been used for VM-based

languages. Up until now, such techniques have not been widely

used in production compilers such as LLVM and GCC. However, a

recent reinforcement learning-based approach, MLGO [26], can be

optionally enabled in LLVM.

Outlining:Outlining is the opposite of inlining, a part (sequence of

instructions) of a function is replaced with a call to a newly formed

function. Chabbi et al. [6] introduce a round-based outliner for code

size reduction. The proposed outliner operates at the ISA-level, after

IR-level optimizations (including inlining), and could be used in

combination with our autotuner to further reduce code size.

8 CONCLUSION

We have presented an extensive, empirical investigation into opti-

mal function inlining on the SPEC2017 benchmark suite. To make

our study feasible, we have introduced a novel inlining search

space formulation that allows massive space reductions (from 2349

to 225 on SPEC2017). Our optimal inlining analysis on more than

1,000 SPEC2017 C/C++ files shed light on an inlining roofline and

quantified the opportunities for improving state-of-the-art inlining

strategies. Our study has also led to actionable insight, which al-

lowed us to design a simple yet effective autotuner that outperforms

LLVM’s inlining heuristic not only on SPEC2017 benchmarks (by

up to 28%) but also on LLVM’s codebase (by 15%) and on SQLite (by

10%). Our autotuner is embarrassingly parallel and can be used in

łcompilation farmsž to rapidly reduce the program size of relevant

applications. We expect our results and methodology to help further

understand the inlining search space and develop better heuristics

for program size as well as performance.

A ARTIFACT APPENDIX

A.1 Abstract

The artifact contains the code and dataset we used for our experi-

ments, as well as scripts to generate the numbers, figures, and tables

of our evaluation. Specifically, it includes (a) the LLVM-IR files we

used both for exhaustive search and autotuning15 (b) a modified

LLVM that we use for exhaustive search and autotuning; (c) scripts

to run exhaustive search and autotuning; (d) the expected outputs;

(e) scripts to generate the tables and figures of our paper; (f) scripts

to perform exhaustive search and autotuning only on smaller call

graphs and to validate the results against the provided ones. Ev-

erything is packaged and pre-built as a docker image. A standard

X86 Linux machine running docker is necessary to evaluate this

artifact.

A.2 Artifact Checklist (Meta-information)
• Data set: LLVM-IR derived from SPEC 2017 CPU benchmarks

• Run-time environment: Linux

• Hardware: X86 computer

• Output: Autotuning results, exhaustive search results, figures and

tables.

15We cannot provide a copy of SPEC due to the SPEC License Agreement, we therefore
only provide the generated LLVM-IR files.

• Experiments: Exhaustive search on a subset of SPEC 2017 CPU

benchmarks, autotuning on all of them.

• How much disk space required (approximately)?: 30G

• How much time is needed to prepare workflow (approxi-

mately)?: A fewminutes to download and import the docker image.

• How much time is needed to complete experiments (approx-

imately)?: Several days to fully reproduce the results (even on a

modern 64-core machine), several tens of minutes to validate the

provided results.

• Publicly available?: Yes

• Code licenses (if publicly available)?: MIT

• Archived (DOI): 10.5281/zenodo.5848986

A.3 Description

A.3.1 How to Access. The artifact can be downloaded from https:

//doi.org/10.5281/zenodo.5848986

A.3.2 Hardware Dependencies. A standard X86 computer. Fully re-

producing the exhaustive search results requires significant amounts

of main memory, around 16GB per parallel job, due to the call graph

size of certain auto-generated files in SPEC2017.

A.3.3 Software Dependencies. Docker.

A.3.4 Datasets. Included in the docker image.

A.4 Installation

tar xf ASPLOS22-Inlining-Artifact.tar.gz

cat inlining-artifact-image.tar |

docker import - inlining_artifact

A.5 Evaluation and Expected Results

The exhaustive search results (Section 4). The autotuning results

(Section 5.2). The paper figures related to exhaustive search and

autotuning. The instructions are in README.md (included both in

the root directory of the docker image and in the .tar.gz file).
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